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has been a great source of information and helped to steer me away from investing

much effort into proving a false theorem. Many of the ideas in §2.1 of this thesis

came about from conversations with Bob Guralnick. Thanks especially to Stefan

Wewers, whose fascinating work inspired my research.

• To Dick Gross, who has been a mentor and role model to me for many years, and

has encouraged me every step of the way.

• To Janet Burns, Monica Pallanti, Paula Scarborough, Robin Toney, and Henry

Benjamin for their help, their friendliness, and their patience with a certain math

graduate student who can never seem to remember how to use the fax machine. Or

the copier.

• To all my friends in the department—you make me look forward to coming into DRL

(seriously, it’s not the beautiful exterior). To Clay and Shea for being wonderful

officemates and for their frequent technological help. To Asher, Shuvra, and Scott

C. for many useful mathematical conversations. To John for being a great officemate

for the last two years. To Wil, Andy, Dragos, Colin, Tobi, Dave F., other Dave F.,

Linda, Hilaf, Pilar, Armin, Jen, Chris, Martin, Scott M., Paul, Mike, Andrew R.,

and everyone else who ever came to a Halloween party at 4203 Pine.

• To all my friends not in the department, for giving me a life outside of school. Living

in a large group house is always a crapshoot, and I have consistently lucked out with

iii



the roommates I have had over the last five years. Thanks to the Philadelphia Jewish

community—I have found incredible friends among you and for that I am grateful.

• To Julie Allmayer, for proofreading an earlier version of this thesis. Of course, all

remaining mistakes are my own responsibility (and were probably introduced after

her exceptionally thorough reading).

• Lastly, to my parents and family, who have recognized and nurtured my interest in

mathematics since I was two years old, if not earlier. They have always given me

their unbounded love and support. I cannot overstate how wonderful it has been to

have my parents and brother nearby during graduate school, and how much I am

looking forward to sharing a city with them during my postdoc.

iv



ABSTRACT

RAMIFICATION OF PRIMES IN FIELDS OF MODULI OF THREE-POINT

COVERS

Andrew Obus

David Harbater, Advisor

We examine in detail the stable reduction of three-point G-Galois covers of the pro-

jective line over a complete discrete valuation field of mixed characteristic (0, p), where

G has a cyclic p-Sylow subgroup. In particular, we obtain results about ramification of

primes in the minimal field of definition of the stable model of such a cover, under certain

additional assumptions on G (one such sufficient, but not necessary set of assumptions is

that G is solvable and p 6= 2). This has the following consequence: Suppose f : Y → P1

is a three-point G-Galois cover defined over C, where G has a cyclic p-Sylow subgroup

of order pn, and these additional assumptions on G are satisfied. Then the nth higher

ramification groups above p for the upper numbering for the extension K/Q vanish, where

K is the field of moduli of f .
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Chapter 1

Introduction

1.1 Overview

This thesis focuses on understanding how primes of Q ramify in the field of moduli of

three-point Galois covers of the Riemann sphere. I generalize a result of Wewers about

ramification of primes p where p divides the order of the Galois group and the p-Sylow

subgroup of the Galois group is cyclic (Theorem 1.4).

Let X be the Riemann sphere P1
C, and let f : Y → X be a finite branched cover of

Riemann surfaces. By Serre’s GAGA principle ([GAGA]), Y is isomorphic to an algebraic

variety and we can take f to be an algebraic, regular map. By a theorem of Grothendieck,

if the branch points of f are Q-rational (for example, if the cover is branched at three

points, which we can always take to be 0, 1, and ∞—such a cover is called a three-point

cover), then the equations of the cover f can themselves be defined over Q (in fact, over

some number field). Let σ ∈ Gal(Q/Q) = GQ. Since X is defined over Q, then σ acts
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on the set of branched covers of X by acting on the coefficients of the defining equations.

We write fσ : Y σ → Xσ for the cover thus obtained. If f : Y → X is Galois with group

G, let Γin ⊂ GQ be the subgroup consisting of those σ which preserve the isomorphism

class of f as well as the G-action. That is, Γin consists of those elements σ of GQ such

that there is an isomorphism φ : Y → Y σ, commuting with the action of G, which makes

the following diagram commute:

Y
φ //

f

��

Y σ

fσ

��
X Xσ

The fixed field QΓin is known as the field of moduli of f (as a G-cover). It is the

intersection of all the fields of definition of f as a G-cover (i.e., those fields of definition K

of f such that the action of G can also be written in terms of polynomials with coefficients

in K); see [CH85, Proposition 2.7]. Occasionally, we will also discuss the fields of moduli

and fields of definition of branched covers as mere covers. This means (for the field of

moduli) that φ need not commute with the G-action, and (for the field of definition) that

the G-action need not be defined over the field in question.

Now, since a branched G-Galois cover f : Y → X of the Riemann sphere is given

entirely in terms of combinatorial data (the branch locus C, the Galois group G, and the

monodromy action of π1(X\C) on Y ), it is reasonable to try to draw inferences about the

field of moduli of f based on these data. However, not much is known about this, and

this is the goal toward which we work.

The problem of determining the field of moduli of three-point covers has applications

2



towards understanding the fundamental exact sequence

1→ π1(P1
Q \ {0, 1,∞})→ π1(P1

Q \ {0, 1,∞})→ GQ → 1,

where π1 is the étale fundamental group functor. This is a very interesting and not

fully understood object (note that a complete understanding would yield a complete

understanding of GQ). The exact sequence gives rise to an outer action of GQ on Π =

π1(P1
Q \ {0, 1,∞}). This outer action would be particularly interesting to understand.

Knowing about fields of moduli aids our understanding as follows: Say the G-Galois cover

f corresponds to the normal subgroup N ⊂ Π, so that Π/N ∼= G. Then the group Γin

consists exactly of those elements of GQ whose outer action on Π both preserves N and

descends to an inner action on Π/N ∼= G.

Remark 1.1. It might seem that restricting to the case of three-point covers of P1 is

a very drastic restriction when studying curves. In fact, according to Belyi’s theorem

([Bel79, Theorem 4]), any curve defined over Q has a map to P1 branched at three points.

So while the case of three-point covers certainly does not include all covers of curves, it

does include some cover f : Y → X for each curve Y defined over Q.

1.2 Main result

One of the first major results in this direction is due to Beckmann:

Theorem 1.2 ([Bec89]). Let f : Y → X be a branched G-Galois cover of the Riemann

sphere, with branch points defined over Q. Then p ∈ Q can be ramified in the field of

moduli of f as a G-cover only if p is ramified in the field of definition of a branch point,
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or p | |G|, or there is a collision of branch points modulo some prime dividing p. In

particular, if f is a three-point cover and if p - |G|, then p is unramified in the field of

moduli of f .

This result was partially generalized by Wewers:

Theorem 1.3 ([Wew03b]). Let f : Y → X be a three-point G-Galois cover of the Riemann

sphere, and suppose that p exactly divides |G|. Then p is tamely ramified in the field of

moduli of f as a G-cover.

In fact, Wewers shows somewhat more, in that he computes the index of tame rami-

fication of p in the field of moduli in terms of some invariants of f .

To state my main theorem, which is a further generalization, we will need some group

theory. Call a finite group G p-solvable if its only simple composition factors with order

divisible by p are isomorphic to Z/p. Clearly, any solvable group is p-solvable. If H ⊂ G,

we write NG(H) for the normalizer of H in G and ZG(H) for the centralizer of H in G.

My main result is:

Theorem 1.4. Let f : Y → X be a three-point G-Galois cover of the Riemann sphere, and

suppose that a p-Sylow subgroup P ⊂ G is cyclic of order pn. Let m = |NG(P )/ZG(P )|.

Let K/Q be the field of moduli of f . Then the nth higher ramification groups for the upper

numbering of K/Q vanish in either of the following cases:

(i) G is p-solvable and either p 6= 2 or G ∼= Z/2n.

(ii) m = 2, provided either that at least two of the three branch points have prime-to-p
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branching index, or that one of the three branch points has prime-to-p branching

index and p 6= 3, 5.

Remark 1.5. (i) Note that Beckmann’s and Wewers’s theorems cover the cases n = 0, 1

in the notation above.

(ii) Any group that satisfies m = 1 is p-solvable by a theorem of Burnside (Lemma 2.2).

We will show (Theorem 2.7) that if G has a cyclic p-Sylow subgroup and is not p-

solvable, it must have a simple composition factor with order divisible by pn. There

seem to be limited examples of simple groups with cyclic p-Sylow subgroups of order

greater than p. For instance, there are no sporadic groups or alternating groups.

There are some of the form PSLr(q). There is also the Suzuki group Sz(32). Other

than these examples, there are none listed in [ATLAS], but this certainly does not

preclude their existence. Furthermore, many of the examples that do exist satisfy

m = 2 (for instance, PSL2(q), where pn exactly divides q2 − 1).

(iii) I fully expect Theorem 1.4 to hold in the case m = 2, even without any assumptions

on p or on the number of points with prime-to-p branching index. In fact, I believe

I have a proof for m = 2, p = 5 in the full generality of Theorem 1.4, save one

exceptional case, but for reasons of time I have not been able to include it. See

Question 5.1.

(iv) If G has a cyclic 2-Sylow subgroup, then it follows from Lemmas 2.1 and 2.2 that

G ∼= N oZ/2n, where 2 - |N | (in particular, G is 2-solvable). I expect Theorem 1.4

to hold in this case as well.
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1.3 Chapter-by-chapter summary and walkthrough

In Chapter 2, we provide the background that is needed for the proof of Theorem 1.4. We

start with §2.1, which proves structure theorems about finite groups with cyclic p-Sylow

groups. The material in §2.2 and §2.4 is well-known. The basic material in §2.3 is also

well-known, but we prove several lemmas that will come in handy in §3.1 and §4.3. The

next few sections introduce the major players in the proof of Theorem 1.4. Specifically,

§2.5 introduces the stable model. The results in this section come from [Ray99]. In §2.6,

the construction of the auxiliary cover faux corresponding to a cover f is described, along

with why it is useful. In particular, Lemma 2.28 gives a connection between the fields of

definition of faux and those of f . Then, §2.7 introduces deformation data, which played

a large role in the proof of Theorem 1.3. Wewers was dealing with covers where the order

of the Galois group was divisible by at most one factor of p, and here we extend the idea

of deformation data to our more general context. In addition to giving definitions and

constructions, we prove many formulas that are used in the proofs of the main theorems.

In Chapter 3, we prove several results which collectively go under the heading of

“Vanishing Cycles Formulas.” These formulas give us detailed information about the

irreducible components of the stable reduction of a cover f . These results are used in §3.2

to place limits on how complicated the stable reduction of f can be.

In Chapter 4, we prove the main Theorem 1.4. We start by outlining the proof. The

proof splits into three cases, corresponding to §4.1, §4.2, and §4.3. The proof of each case

depends heavily on the results of Chapters 2 and 3.

In Chapter 5, we discuss some of the questions arising from this thesis.
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1.4 Notations and conventions

The following notations will be used throughout the thesis: The letter p always represents

a prime number. If G is a group and H a subgroup, we write H ≤ G. We denote by

NG(H) the normalizer of H in G and by ZG(H) the centralizer of H in G. The order of

G is written |G|. If G has a cyclic p-Sylow subgroup P , and p is understood, we write

mG = |NG(P )/ZG(P )|. If a group G has a unique cyclic subgroup of order pi, we will

occasionally abuse notation and write Z/pi for this subgroup.

If K is a field, K is its algebraic closure. We write GK for the absolute Galois group

of K. If H ≤ GK , write KH for the fixed field of H in K. If K discretely valued, then

Kur is the completion of the maximal unramified algebraic extension of K. If K is a field

of characteristic 0 (resp. characteristic p), then for all j ∈ Z>0 (resp. those j which are

prime to p), we fix a compatible system of primitive jth roots of unity ζj . “Compatible”

means that ζiij = ζj for all i, j. The notations µp, αp denote group schemes.

If x is a scheme-theoretic point of a scheme X, then OX,x is the local ring of x on X.

For any local ring R, R̂ is the completion of R with respect to its maximal ideal. If R

is any ring with a non-archimedean absolute value | · |, then the ring R{T} is the ring of

power series
∑∞

i=0 ciT
i such that limi→∞ |ci| = 0. If R is a discrete valuation ring with

fraction field K of characteristic 0 and residue field k of characteristic p, we normalize

the absolute value on K and on any subring of K so that |p| = 1/p.

A branched cover f : Y → X of smooth proper curves is a finite surjective morphism.

All branched covers are assumed to be geometrically connected, unless explicitly noted

otherwise. If f is of degree d and G is a finite group of order d with G ∼= Aut(Y/X),
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then f is called a Galois cover with (Galois) group G. If we choose an isomorphism

i : G → Aut(Y/X), then the datum (f, i) is called a G-Galois cover (or just a G-cover,

for short). We will usually suppress the isomorphism i, and speak of f as a G-cover.

Suppose f : Y → X is a G-cover of smooth curves, and K is a field of definition for

X. Then the field of moduli of f relative to K (as a G-cover) is the fixed field in K/K

of Γin ⊂ GK , where Γin = {σ ∈ GK |fσ ∼= f(as G-covers)} (see §1.1). If X is P1, then the

field of moduli of f means the field of moduli of f relative to Q. Unless otherwise stated,

a field of definition (or moduli) of f (or the stable model of f) means a field of definition

(or moduli) as a G-cover (see §1.1). If we do not want to consider the G-action, we will

always explicitly say the field of definition (or moduli) as a mere cover (this happens only

in Chapter 4).

The ramification index of a point y ∈ Y such that f(y) = x is the ramification index

of the extension of local rings ÔX,x → ÔY,y. If f is Galois, then the branching index of a

closed point x ∈ X is the ramification index of any point y in the fiber of f over x. If the

ramification index of y (resp. the branching index of x) is greater than 1, then y (resp. x)

is called a ramification point (resp. branch point).

Let f : Y → X be any morphism of schemes and suppose H is a finite group with

H ↪→ Aut(Y/X). If G is a finite group containing H, then there is a map IndGHY → X,

where IndGHY is a disjoint union of [G : H] copies of Y , indexed by the left cosets of H

in G. The group G acts on IndGHY , and the stabilizer of each copy of Y in IndGHY is a

conjugate of H.

If X is a scheme, then pa(X) represents its arithmetic genus.
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For any real number r, brc is the greatest integer less than or equal to r. Also,

〈r〉 = r − brc. By convention, all integers are prime to 0 and 0 does not divide any

integer.

The phrase “a := b” means that a is defined to be equal to b.
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Chapter 2

Background Material

2.1 Finite groups with cyclic p-Sylow subgroups

In this section, we prove structure theorems about finite groups with cyclic p-Sylow

subgroups. The main results are Corollary 2.4 and Theorem 2.7. Throughout §2.1,

G is a finite group with a cyclic p-Sylow subgroup P of order pn. Recall that mG =

|NG(P )/ZG(P )|. We will often abbreviate mG to m when G is understood.

Lemma 2.1. Let Q ≤ P have order p. Then if g ∈ NG(P ) acts trivially on Q by

conjugation, it acts trivially on P . Thus NG(P )/ZG(P ) ↪→ Aut(Q), so m|(p− 1).

Proof. We know Aut(P ) ∼= (Z/pn)×, which has order pn−1(p−1), with a unique maximal

prime-to-p subgroup C of order p − 1. Let g ∈ NG(P ), and suppose that the image g of

g in NG(P )/ZG(P ) ⊆ Aut(P ) acts trivially on Q. Since

(Z/pn)× ∼= Aut(P ) � Aut(Q) ∼= (Z/p)×,
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has p-group kernel we know that g has p-power order. If g is not trivial, then g /∈ P , and

the subgroup 〈g, P 〉 of G has a non-cyclic p-Sylow subgroup. This is impossible, so g is

trivial, and g acts trivially on P . 2

We state a theorem of Burnside that will be useful in proving Corollary 2.4:

Lemma 2.2 ([Zas56], Theorem 4, p. 169). Let Γ be a finite group, with a p-Sylow subgroup

Π. Then, if NΓ(Π) = ZΓ(Π), the group Γ can be written as an extension

1→ Σ→ Γ→ Π′ → 1,

where Π ≤ Γ maps isomorphically onto Π′.

Recall that a group G is p-solvable if its only simple composition factors with order

divisible by p are isomorphic to Z/p.

Proposition 2.3. Suppose that a finite group G′ has a normal subgroup M of order p

contained in a cyclic p-Sylow subgroup Q, and no nontrivial normal subgroups of prime-

to-p order. Then G′ ∼= Qo Z/mG′. In particular, G′ is solvable.

Proof. Consider the centralizer C := ZG′(M). Now, Q is clearly a p-Sylow subgroup of

C. We claim that NC(Q) = ZC(Q).

To prove the claim, say g ∈ NC(Q). If g has p-power order, then g ∈ Q (otherwise the

p-Sylow subgroup of C would not be cyclic), thus g ∈ ZC(Q). If g has prime-to-p order,

then g induces an element h of prime-to-p order in Aut(Q). But the prime-to-p part of

Aut(Q) is canonically isomorphic to Aut(M) via restriction, and g centralizes M , being

in C. Thus g centralizes Q. Lastly, if the order of g is divisible by p but is not a power
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of p, then ga is of p-power order for some a prime to p. Thus g induces an element h of

order a in Aut(Q). Again, since Aut(Q) ∼= Aut(M) via restriction and g centralizes M ,

it follows that a = 1 and we are reduced to the previous case. So the claim is proved.

Since NC(Q) = ZC(Q), Lemma 2.2 shows that C can be written as an extension

1→ S → C → Q→ 1,

where Q ⊆ C maps isomorphically onto Q. The group S, being the maximal normal

prime-to-p subgroup of C, is characteristic in C. Since C is normal in G′ (it is the

centralizer of the normal subgroup M), S is normal in G′. But by assumption, G′ has

no nontrivial normal subgroups of prime-to-p order, so S is trivial and C = Q. Again,

since C is normal in G′, then G′ is of the form Q o T , where T is prime-to-p, by the

Schur-Zassenhaus theorem. The conjugation action of T on Q must be faithful, since if

there were a kernel, the kernel would be a nontrivial prime-to-p normal subgroup of G′,

contradicting the assumption that G′ has none. Since the subgroup of Aut(Q) induced

by this action is cyclic of order mG′ , we have T ∼= Z/mG′ . 2

Corollary 2.4. Suppose G is p-solvable. Let N be the maximal prime-to-p normal sub-

group of G. Then G/N ∼= Z/pnoZ/mG, where the conjugation action of Z/mG on Z/pn

is faithful.

Proof. Consider a minimal normal subgroup M of the group G′ := G/N . We know that

M is a direct product of isomorphic simple groups, each with order divisible by p. Since a

p-Sylow subgroup of G (hence G′) is cyclic, a p-Sylow subgroup of M is as well, and thus

M must in fact be a simple group. Since G (hence G′) is p-solvable, M ∼= Z/p. Then M
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is normal in G′, and is contained in some subgroup Q ∼= Z/pn. By construction, G′ has

no nontrivial normal subgroups of prime-to-p order. So we conclude by Proposition 2.3.

2

Corollary 2.5. If G has a normal subgroup of order p, it is p-solvable.

Proof. Let N be the maximal normal prime-to-p subgroup of G. Then G/N still has

a normal subgroup of order p, and no nontrivial normal subgroups of prime-to-p order.

By Corollary 2.4 G/N ∼= Z/pn o Z/mG. Since N is prime-to-p, this means that G is

p-solvable. 2

Before we prove the main theorem of this section, we prove a lemma. Our proof

depends on the classification of finite simple groups.

Lemma 2.6. Let S be a nonabelian finite simple group with a cyclic p-Sylow subgroup.

Then any element x ∈ Out(S) with order p lifts to an automorphism x ∈ Aut(S) with

order p.

Proof. All facts about finite simple groups used in this proof that are not clear from the

definitions or otherwise cited can be found in [ATLAS].

First note that p 6= 2. This is because mS |(p− 1) (Lemma 2.1), so if p = 2, we would

have mS = 1. By Lemma 2.2 and the simplicity of S, we would have that S is equal to

its (cyclic) p-Sylow subgroup, which is a contradiction. Note also that no primes other

than 2 divide the order of the outer automorphism group of any alternating or sporadic

group. So we may assume that S is of Lie type.
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We first show that p does not divide the order d of the diagonal automorphism group

or g of the graph automorphism group of S. The only simple groups S of Lie type for

which an odd prime divides g are those of the form O+
8 (q). In this case 3|g. But O+

8 (q)

contains (O+
4 (q))2 in block form, and the order of O+

4 (q) is 1
(4,q2−1)

(q2(q2 − 1)2). This is

divisible by 3, so O+
8 (q) contains the group Z/3×Z/3, and does not have a cyclic 3-Sylow

subgroup. The simple groups S of Lie type for which an odd prime p divides d are the

following:

1. PSLn(q), for p|(n, q − 1).

2. PSUn(q2), for p|(n, q + 1).

3. E6(q), for p = 3 and 3|(q − 1).

4. 2E6(q2), p = 3 and 3|(q + 1).

Now, PSLn(q) contains a split maximal torus ((Z/q)×)n−1. Since p|(q − 1), this group

contains (Z/p)n−1 which is not cyclic, as p|n and p 6= 2. So a p-Sylow subgroup of PSLn(q)

is not cyclic. The diagonal matrices in PSUn(q2) form the group (Z/(q + 1))n−1, which

also contains a non-cyclic p-group. The group E6(q) has a split maximal torus ((Z/q)×)6

([Hum75, §35]), and thus contains a non-cyclic 3-group. Lastly, 2E6(q2) is constructed as

a subgroup of E6(q2). When q ≡ −1 (mod 3), the ratio |E6(q2)|/|2E6(q2)| is not divisible

by 3, so a 3-Sylow subgroup of 2E6(q2) is isomorphic to one of E6(q2), which we already

know is not cyclic.

So we know that if there exists an element x ∈ Out(S) of order p, we must have that

p divides f , the order of the group of field automorphisms. Also, since the group of field
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automorphisms is cyclic and p does not divide d or g, a p-Sylow subgroup of Out(S) is

cyclic. This means that all elements of order p in Out(S) are conjugate in Out(S). Now,

there exists an automorphism α in Aut(S) which has order p and is not inner. Namely,

we view S as the Fq-points of some Z-scheme, where q = ℘f for some prime ℘, and we

act on these points by the (f/p)th power of the Frobenius at ℘. Let α be the image of

α in Out(S). Since α is conjugate to x in Out(S), there exists some x conjugate to α in

Aut(S) such that x is the image of x in Out(S). Then x must have order p. It is the

automorphism we seek. 2

The main theorem we wish to prove in this section essentially states that a finite group

with a cyclic p-Sylow subgroup is either p-solvable or “as far from p-solvable as possible.”

Theorem 2.7. Let G be a finite group with a cyclic p-Sylow subgroup P of order pn.

Then one of the following two statements is true:

• G is p-solvable.

• G has a simple composition factor S with pn | |S|.

Proof. Clearly we may replace G by G/N , where N is the maximal prime-to-p normal

subgroup of G. So assume that any nontrivial normal subgroup of G has order divisible

by p. Let S be a minimal normal subgroup of G. Then S is a direct product of isomorphic

simple groups. Since G has cyclic p-Sylow subgroup, and no normal subgroups of prime-

to-p order, we see that S is a simple group with p | |S|. If S ∼= Z/p, Corollary 2.5 shows

that G is p-solvable. So assume, for a contradiction, that pn - |S| and S � Z/p. Then

G/S contains a subgroup of order p. Let H be the inverse image of this subgroup in G.
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It follows that H is an extension of the form

1→ S → H → H/S ∼= Z/p→ 1. (2.1.1)

We claim that H cannot have a cyclic p-Sylow subgroup, thus obtaining the desired

contradiction.

To prove our claim, we show that H is in fact a semidirect product S oH/S, i.e., we

can lift H/S to a subgroup of H. Let x be a generator of H/S. We need to find a lift x of

x which has order p. It suffices to find x lifting x such that conjugation by xp on S is the

trivial isomorphism, as S is center-free. In other words, we seek an automorphism of S of

order p which lifts the outer automorphism φx of order p given by x. This automorphism

is provided by Lemma 2.6, finishing the proof. 2

2.2 Covers in characteristic zero

Let C = {p0, . . . , pn} be a nonempty finite set of closed points of X = P1
C. Consider

U = X\C as a complex manifold. If ξ is a base point, the fundamental group π1(U, ξ)

can be generated by elements γi, 0 ≤ i ≤ n, where each γi loops once counterclockwise

from ξ around pi and where
∏n
i=0 γi = 1. Then π1(U, ξ) is presented by the γi with this

relation. The ordered n+ 1-tuple given by the γi is called a standard homotopy basis for

U at ξ.

Fix a standard homotopy basis γi for U at ξ. If f : Y → X is a G-Galois branched

cover, étale over U , then f corresponds to a unique open normal subgroup N ≤ π1(U)

such that π1(U)/N ∼= G. This isomorphism is fixed once we pick a base point ζ of Y above
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ξ. Fix ζ, and write γi for the image of γi in G. Then the n+1-tuple (γ0, . . . , γn) ∈ Gn+1 is

called the description of the pointed cover f . The γi generate G, and their product is the

identity. The order of each γi is the branching index of the point pi in f . If we consider

f as a non-pointed cover, then the description is defined only up to uniform conjugation

by an element in G. By the Riemann Existence Theorem, this correspondence is in fact

a bijection between algebraic branched covers and n + 1-tuples gi of elements of G such

that
∏n
i=0 gi = 1, up to uniform conjugation by an element of G. See also [CH85, p. 822].

Let K be an algebraically closed field of characteristic 0. Let XK = P1
K . Fix embed-

dings iK : Q ↪→ K and iC : Q ↪→ C. Suppose the finite set C = {p0, . . . , pn} consists of

Q-rational points, and that ξ is Q-rational. View the set C∪{ξ} as a subset of P1
K via iK .

Let UK = XK\C. Then, by [Sza09, Theorem 4.6.10], the embeddings iK and iC give rise

to an isomorphism of étale fundamental groups πét
1 (UK , ξ)

∼→ πét
1 (U, ξ). In particular, this

yields a bijection between G-Galois branched covers of XK , étale over UK , and G-Galois

branched covers of X, étale over U . Thus G-Galois branched covers of XK , étale over

UK , are in natural bijection with n+ 1-tuples gi of elements of G such that
∏n
i=0 gi = 1,

up to uniform conjugation by an element of G.

2.3 Basic facts about (wild) ramification

We state here some facts from [Ser79, IV] and derive some consequences. Let K be a

complete discrete valuation field with algebraically closed residue field k of characteristic

p > 0. If L/K is a finite Galois extension of fields with Galois group G, then L is also a

complete discrete valuation field with residue field k. Here G is of the form PoZ/m, where
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P is a p-group and m is prime to p. The group G has a filtration G = G0 ⊇ G1 ⊇ · · ·

for the lower numbering and G ⊇ Gi for i ∈ R≥0 for the upper numbering, with Gi ⊇ Gj

when i ≤ j (see [Ser79, IV, §1, §3]). The subgroup Gi (resp. Gi) is known as the ith higher

ramification group for the lower numbering (resp. the upper numbering). One knows that

G0 = G0 = G, G1 = P . For sufficiently small ε > 0, Gε = P , and for sufficiently large

i ∈ Z, Gi = Gi = {id}. Any i such that Gi ) Gi+ε for all ε > 0 is called an upper jump

of the extension L/K. Likewise, if Gi ) Gi+1, then i is called a lower jump of L/K. The

greatest upper jump (i.e., the greatest i such that Gi 6= {id}) is called the conductor of

higher ramification of L/K (for the upper numbering). The upper numbering is invariant

under quotients ([Ser79, IV, Proposition 14]). That is, if H ≤ G is normal, and M = LH ,

then the ith higher ramification group for the upper numbering for M/K is Gi/(Gi ∩H).

Lemma 2.8. Let L1, . . . , L` be Galois extensions of K with compositum L in some al-

gebraic closure of K. Denote by hi the conductor of Li/K and by h the conductor of L.

Then h = maxi(hi).

Proof. Write G = Gal(L/K) and Ni = Gal(L/Li). Suppose g ∈ Gj ⊆ Gal(L/K). Since

L is the compositum of the Li, the intersection of the Ni is trivial. So g is trivial iff its

image in each G/Ni is trivial. Because the upper numbering is invariant under quotients,

this shows that Gj is trivial iff the jth higher ramification group for the upper numbering

for Li/L is trivial for all i. This means that h = maxi(hi). 2

Example 2.9. LetK = Frac(W (k)), for k algebrically closed of characteristic p. Consider

the extension K(ζp, p
√
a)/K, where a ∈ K is not a pth power and satisfies either v(a) = 1
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or a = 1 + u with v(u) = 1. This is a Z/p o Z/(p − 1)-extension. In the first case, we

write L1/K, and we can take a uniformizer of L1 to be ζp−1
p√a . In the second case, we write

L2/K, and we can take a uniformizer of L2 to be ζp−1
a− p√a . A calculation following [Viv04,

Theorem 6.3] for L1/K (or [Viv04, Theorem 5.6] for L2/K) shows that the conductor for

the extension L1/K is p
p−1 , whereas L2/K has conductor 1

p−1 .

Lemma 2.10. If P is abelian, then all upper jumps (in particular, the conductor of higher

ramification) are in 1
mZ.

Proof. Let L0 ⊂ L be the fixed field of L under P . By the Hasse-Arf theorem ([Ser79,

IV, §3]), the upper jumps for the P -extension L/L0 are integers. By Herbrand’s formula

([Ser79, IV, §3]), the upper jumps for L/K are 1
m times those for L/L0. The lemma

follows. 2

If P is trivial, we say that the extension L/K is tamely ramified. Otherwise, we say it

is wildly ramified. If A,B are the valuation rings of K,L, respectively, sometimes we will

refer to the conductor or higher ramification groups of the extension B/A.

2.3.1 Smooth Curves

Let f : Y → X be a branched cover of smooth, proper, integral curves over k. The

Hurwitz formula ([Har77, IV §2]) states that

2gY − 2 = (deg f)(2gX − 2) + |R|,

where R is the ramification divisor and |R| is its degree. R is supported at the rami-

fication points y ∈ Y . For each ramification point y ∈ Y with image x ∈ X, we can
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consider the extension of discrete valuation rings ÔY,y/ÔX,x. We say that y is tamely

(resp. wildly) ramified when this extension is tamely (resp. wildly) ramified. The degree

of the ramification divisor at y can be related to the higher ramification filtrations of

Frac(ÔY,y)/Frac(ÔX,x) ([Ser79, IV, Proposition 4]).

In particular, suppose the Galois group G of ÔY,y/ÔX,x is isomorphic to P o Z/m

with P cyclic of order pn. For 1 ≤ i ≤ n, write ui (resp. ji) for the upper (resp. lower)

jump such that Gi (resp. Gi) is isomorphic to Z/pn−i+1. Write u0 = j0 = 0. Then

0 = u0 ≤ u1 < · · · < un and 0 = j0 ≤ j1 < · · · < jn. Let |Ry| be the order of R at y.

Lemma 2.11. (i) In terms of the lower jumps, we have

|Ry| = pnm− 1 +
n∑
i=1

jip
n−i(p− 1) = pnm− 1 +

n∑
i=1

(pn−i+1 − 1)(ji − ji−1).

(ii) In terms of the upper jumps, we have

|Ry| = pnm− 1 +
n∑
i=1

mpi−1(pn−i+1 − 1)(ui − ui−1).

Proof. By [Har77, IV §2], |Ry| is equal to the valuation of the different of the extension

ÔY,y/ÔX,x, where a uniformizer of ÔY,y is given valuation 1. By [Ser79, IV, Proposition 4],

this different is equal to
∑∞

r=0(|Gr|−1). Now it is a straightforward exercise to show that

(i) holds. Part (ii) follows from part (i) by Herbrand’s formula (essentially, the definition

of the upper numbering). 2

Remark 2.12. In the above context, it follows from Herbrand’s formula that the conduc-

tor un is equal to 1
m

∑n
i=1

ji−ji−1

pi−1 , which can also be written as
(∑n−1

i=1
p−1
pim

ji

)
+ 1

pnmjn.

Combining the Hurwitz formula with Lemma 2.11 in the simple case G ∼= Z/p, the

following corollary is an easy exercise:
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Corollary 2.13. Let f : Y → P1 be a Z/p-cover of curves over an algebraically closed

field k of characteristic p, branched at exactly one point of order p. If the conductor of

higher ramification for the upper numbering at this point is h, then the genus of Y is

(h−1)(p−1)
2 .

We include a well-known lemma (cf. [Pri02, Theorem 1.4.1 (i)]):

Lemma 2.14. Let k be an algebraically closed field of characteristic p, and let f : Y → P1

be a Z/p-cover, branched only over ∞. Then f can be given birationally by an equation

yp − y = g(x), where the terms of g(x) have prime-to-p degree. If h is the conductor of

higher ramification at ∞, then h = deg(g).

2.3.2 Non-Smooth Curves

Let k be an algebraically closed field of any characteristic. A semistable curve over

k is a dimension 1 reduced scheme of finite type over k whose only singularities are

ordinary double points. Let f : Y → X be a finite, flat, separable morphism of projective

semistable curves over k. Suppose X is connected (Y need not be connected), and assume

that pa(X) = 0 (i.e., X is a tree of P1s). Suppose further that Aut(Y /X) acts transitively

on each fiber of f , that every node of Y lies above a node of X, and that the inertia group

of each node of Y (on either of the components passing through it) is of order prime to

char(k). Lastly, let Rsm be the restriction of the ramification divisor of f to the smooth

points of Y . We have the following generalized Hurwitz formula

Proposition 2.15. 2pa(Y )− 2 = −2(deg(f)) + |Rsm|.
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Proof. Let C be the set of irreducible components of X and let D be the set of nodes of

X. Because X is a tree of P1’s, |C| = |D|+ 1. For each d ∈ D, let md be the ramification

index of a point y of Y above d, taken with respect to either irreducible component passing

through Y . This is well-defined because Aut(Y /X) acts transitively on the fibers. For

each Xc ∈ C, let nc be the number of irreducible components of Y lying above Xc. Let

gc be the genus of any of these components (again, well-defined because of the transitive

action of Aut(Y /X)). Lastly, let Rc be the ramification divisor on Y c := Y ×X Xc of the

map Y c → Xc.

Let S be the set of irreducible components and let T be the set of nodes of Y . By

[Liu02, Proposition 10.3.18], pa(Y )− 1 = |T |+∑Y s∈S(genus(Y s)− 1). Then we have

pa(Y )− 1 =
∑
c∈C

nc(gc − 1) +
∑
d∈D

deg(f)
md

=
∑
c∈C

(
nc

(
−deg(f)

nc

)
+
|Rc|

2

)
+
∑
d∈D

deg(f)
md

=
|Rsm|

2
−
∑
c∈C

deg(f) +
∑
d∈D

deg(f)
(

1− 1
md

)
+
∑
d∈D

deg(f)
md

=
|Rsm|

2
+ (|D| − |C|)(deg(f))

=
|Rsm|

2
− deg(f),

with the second equality coming from the Hurwitz formula on each component and the

third equality coming from separating out those parts of each Rc included in Rsm. The

formula follows by multiplying both sides by 2. 2

We maintain the assumptions of Proposition 2.15. Furthermore, let G ∼= Z/pnoZ/m,

with p - m, where char(k) is either p or 0, and suppose thatG ≤ Aut(Y /X) acts generically
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freely on Y and acts transitively on all fibers of f . In particular, deg(f) = pnm. Let

H ≤ G be the unique subgroup of order p. Write B for the set of smooth points of X

with branching index prime to char(k), and B′ for the set of smooth branch points of x

where char(k) divides the branching index. If xb ∈ B, write mb for the branching index

at xb, and if xb ∈ B′, write σb for the conductor of higher ramification for a point of Y

above xb.

Corollary 2.16. The difference pa(Y )− pa(Y /H) is equal to

1
2
pn−1(p− 1)m

(∑
b∈B

(
1− 1

mb

)
+
∑
b∈B′

(σb + 1)− 2

)
.

Proof. Let R′sm be the restriction of the ramification divisor of Y /H → X to the smooth

locus of Y /H. By Proposition 2.15, we have

pa(Y )− pa(Y /H) = −pn−1(p− 1)m+
|Rsm| − |R′sm|

2
. (2.3.1)

For each xb ∈ B, the contribution of xb to |Rsm| is pnm(1 − 1
mb

), and to |R′sm| it is

pn−1m(1 − 1
mb

). For each xb ∈ B′, suppose the ramification index above xb is equal to

pn
′
m′, with p - m′. Then the contribution of b to |Rsm| is

pn−n
′ m

m′

(
pn
′
m′ − 1 +

n′∑
i=1

m′pi−1(pn
′−i+1 − 1)(ui − ui−1)

)
,

where the ui are the upper jumps for a point yb above xb (Lemma 2.11). Similarly, the

contribution of b to |R′sm| is

pn−n
′ m

m′

(
pn
′−1m′ − 1 +

n′−1∑
i=1

m′pi−1(pn
′−i − 1)(ui − ui−1)

)
.
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Since, by definition, σb = un, a straightforward calculation shows that the difference in

these contributions is pn−1(p− 1)m(σb + 1). So

|Rsm| − |R′sm| = pn−1(p− 1)m

(∑
b∈B

(
1− 1

mb

)
+
∑
b∈B′

(σb + 1)

)
.

Combining this with (2.3.1) yields the corollary. 2

2.4 Semistable models of P1

We now introduce some notation that will be used for the remainder of Chapter 2. Let

X ∼= P1
K , where K is a characteristic zero complete discretely valued field with alge-

braically closed residue field k of characteristic p > 0 (e.g., K = Qurp ). Let R be the

valuation ring of K. Write v for the valuation on R. We normalize by setting v(p) = 1.

2.4.1 Models

Fix a smooth model XR of X over R, i.e., a smooth, flat, proper R-scheme XR such

that XR ⊗R K ∼= X. Then there is an element T ∈ K(X) such that K(T ) ∼= K(X)

and the local ring at the generic point of the special fiber of XR is the valuation ring

of K(T ) corresponding to the Gauss valuation. We say that our model corresponds to

the Gauss valuation on K(T ), and we call T a coordinate of XR. Conversely, if T is

any rational function on X such that K(T ) ∼= K(X), there is a smooth model XR of

X such that T is a coordinate of XR. Since the automorphism group of K(T )/K is

PGL2(K), whereas the automorphism group of K(T )gauss/K as an extension of valued

fields is PGL2(R), this shows that smooth models of X up to automorphism are in
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bijection with PGL2(K)/PGL2(R). This bijection becomes canonical once we pick a

preferred model XR.

Let XR be a semistable model of X over R (i.e., its fibers are semistable, see §2.3.2)

The special fiber of such a model XR is a tree-like configuration of P1
k’s. Each irreducible

component of the special fiber X of XR corresponds to a smooth model of X, and thus a

valuation ring of K(X). Such models will be used in §2.5, and throughout the thesis.

2.4.2 Disks and Annuli

We give a brief overview here. For more details, see [Hen98].

Let XR be a semistable model for X = P1
K . Suppose x is a smooth point of the special

fiber of XR on the irreducible component W . Let T be a coordinate of the smooth model

of X with special fiber W such that T = 0 specializes to x. Then the set of points of X

which specialize to x is the open p-adic disk given by v(T ) > 0. The complete local ring

of x in XR is isomorphic to R[[T ]]. For our purposes, a general open (resp. closed) p-adic

disk is a subset D ⊂ P1(K) such that there is a rational function T with K(T ) ∼= K(P1)

and D is given by v(T ) > 0 (resp. v(T ) ≥ 0).

Now, let x be a nodal point of the special fiber of XR, at the intersection of components

W and W
′. Then the set of points of X which specialize to x is an open annulus. If T

is a coordinate on the smooth model of X with special fiber W such that T = 0 does

not specialize to x, then the annulus is given by 0 < v(T ) < e for some e ∈ v(K×). The

complete local ring of x in XR is isomorphic to R[[T,U ]]/(TU − pe). For our purposes, a

general open annulus of épaisseur e is a subset A ⊂ P1(K) such that there is a rational
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function T with K(T ) ∼= K(P1) and A is given by 0 < v(T ) < e. Observe that e is

independent of the coordinate.

Suppose we have a preferred coordinate T on X and a semistable model XR of X whose

special fiber X contains an irreducible component X0 corresponding to the coordinate T .

If W is any irreducible component of X other than X0, then since X is a tree of P1’s, there

is a unique nonrepeating sequence of consecutive, intersecting componentsW, . . . ,X0. Let

W
′ be the component in this sequence that intersects W . Then the set of points in X(K)

that specialize to the connected component of W in X\W ′ is a closed p-adic disk D. If

the established preferred coordinate (equivalently, the preferred component X0) is clear,

we will abuse language and refer to the component W as corresponding to the disk D,

and vice versa.

2.5 Stable reduction

We continue the notations of §2.4, but we allow X to be a smooth, proper, geometrically

integral curve of any genus gX , so long as X has a smooth model XR over R. Let

f : Y → X be a G-Galois cover defined over K, with G any finite group, such that

the branch points of f are defined over K and their specializations do not collide on the

special fiber of XR. Assume that 2gX −2 + r ≥ 1, where r is the number of branch points

of f . By a theorem of Deligne and Mumford ([DM69, Corollary 2.7]), combined with

work of Raynaud ([Ray90], [Ray99]), there is a minimal finite extension Kst/K with ring

of integers Rst, and a unique semistable model Xst of XKst = X ⊗K Kst, such that Xst

is a blowup of XRst = XR ⊗R Rst centered at closed points of the special fiber, Xst is
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normal, and the normalization Y st of Xst in Kst(Y ) has the following properties:

• The special fiber Y of Y st is semistable, i.e., it is reduced, and has only nodes for

singularities. Furthermore, the nodes of Y lie above nodes of the special fiber X of

Xst.

• The ramification points of fKst = f ⊗K Kst specialize to distinct smooth points of

Y .

• Any genus zero irreducible component of Y contains at least three marked points

(i.e., ramification points or points of intersection with the rest of Y ).

The map f st : Y st → Xst is called the stable model of f and the field Kst is called

the minimal field of definition of the stable model of f . If we are working over a finite

field extension K ′/Kst with ring of integers R′, we will sometimes abuse language and

call fst ⊗Rst R′ the stable model of f . For each σ ∈ GK , σ acts on Y and this action

commutes with G. Then it is known ([Ray99, Théorème 2.2.2]) that the extension Kst/K

is the fixed field of the group Γst ≤ GK consisting of those σ ∈ GK such that σ acts

trivially on Y . Thus Kst is clearly Galois over K.

If Y is smooth, the cover f : Y → X is said to have potentially good reduction. If Y

can be contracted to a smooth curve by blowing down components of genus zero, then the

curve Y is said to have potentially good reduction. If f or Y does not have potentially

good reduction, it is said to have bad reduction. In any case, the special fiber f : Y → X

of the stable model is called the stable reduction of f . The action of G on Y extends

to the stable reduction Y and Y /G ∼= X. The strict transform of the special fiber of
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XRst in X is called the original component, and will be denoted X0. We orient the tree

of X outward from the original component X0. This induces a partial order ≺ where

irreducible components W and W
′ of X satisfy W ≺ W

′ if and only if W ′ lies in the

connected component of X\W not containing X0. If w is a point of X, we will write

w ≺ W
′ if there is a component W 3 w such that W ≺ W

′. Also, we write w � W if

there is a component W ′ 3 w such that W ′ � W . Lastly, if w and w′ are points of X,

we write w ≺ w′ if w 6= w′ and if there exist components W and W
′ containing w and

w′ respectively such that W ≺ W
′. The symbol � has the obvious meaning in the case

of two components or two points. A maximal component for ≺ is called a tail. All other

components are called interior components.

2.5.1 Inertia Groups of the Stable Reduction

Proposition 2.17. The inertia groups of f : Y → X at points of Y are as follows (note

that points in the same G-orbit have conjugate inertia groups):

(i) At the generic points of irreducible components, the inertia groups are p-groups.

(ii) At each node, the inertia group is an extension of a cyclic, prime-to-p order group

by a p-group generated by the inertia groups of the generic points of the crossing

components.

(iii) If a point bi ∈ Y above a branch point ai ∈ X specializes to a smooth point bi on

a component V of Y , then the inertia group at bi is an extension of the prime-to-p

part of the inertia group at bi by the inertia group of the generic point of V .
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(iv) At all other points q (automatically smooth, closed), the inertia group is equal to the

inertia group of the generic point of the irreducible component of Y containing q.

Proof. [Ray99, Proposition 2.4.11]. 2

For the rest of this subsection, assume G has a cyclic p-Sylow subgroup. When G

has a cyclic p-Sylow subgroup, the inertia groups above a generic point of an irreducible

component W ⊂ X are conjugate cyclic groups of p-power order. If they are of order

pi, we call W a pi-component. If i = 0, we call W an étale component, and if i > 0, we

call W an inseparable component. This nomenclature comes from the fact that for an

inseparable component W , Y ×XW →W corresponds to an inseparable extension of the

function field k(W ).

Corollary 2.18. If V and V
′ are two adjacent irreducible components of Y , and if IV

and IV ′ are the inertia groups of their generic points, then either IV ⊆ IV ′ or vice versa.

Proof. Let q be a point of intersection of V and V
′ and let Iq be its inertia group. Then

the p-part of the Iq is a cyclic p-group, generated by the two cyclic p-groups IV and IV ′ .

Since the subgroups of a cyclic p-group are totally ordered, the corollary follows. 2

Proposition 2.19. If x ∈ X is branched of index pas, where p - s, then x specializes to

a pa-component.

Proof. By Proposition 2.17 (iii) and the definition of the stable model, x specializes to

a smooth point of a component whose generic inertia has order at least pa. Because

our definition of the stable model requires the specializations of the |G|/pas ramification
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points above a to be disjoint, the specialization of x must have a fiber with cardinality

a multiple of |G|/pas. This shows that x must specialize to a component with inertia at

most pa. 2

Definition 2.20. Let W be an irreducible component of X. We call the stable reduction

f of f monotonic from W if for every W �W ′ �W ′′ such that W ′ is a pi-component and

W
′′ is a pj-component, we have i ≥ j. In other words, the stable reduction is monotonic

from W if the generic inertia does not increase as we move outward from W along X. If

f is monotonic from the original component X0, we say simply that f is monotonic.

Remark 2.21. Let P be a p-Sylow subgroup of G. We will eventually show (Proposition

3.10) that if f is a three-point G-cover such that G is p-solvable or mG = 2, then f will

always have monotonic stable reduction. So for the types of covers considered in Theorem

1.4, we have monotonic stable reduction.

Proposition 2.22 ([Ray99], Proposition 2.4.8). If W is an étale component of X, then

W is a tail.

Proposition 2.23 ([Ray99], Corollaire 2.4.10). If X = X0 and the genus of Y is at least

2, then YR is smooth, and Y is generically étale over X.

Proposition 2.24. Assume X is not smooth. If W is a tail of X which is a pa-component,

then the component W ′ that intersects W is a pb-component with b > a.

Proof. Since X is not smooth, W is not the original component. Assume that the propo-

sition is false. The proof is virtually the same as the proof of [Ray99, Lemme 3.1.2]. Let
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V be an irreducible component of Y lying above the genus zero component W , and let

I ∼= Z/pa be the inertia group of V . Consider Y /I =: Y ∧. The image V ∧ of V in Y
∧ is

now generically étale and tamely ramified over W . The only possible branch points are

the point of intersection of W and W
′, and the specialization of at most one point ai to

W . Since there are at most two branch points, and they are tame, V ∧ is totally ramified

at these points, and thus it has genus zero and is connected to Y
∧ at only one point.

But then the same is true for V and Y , as quotienting out by I corresponds to a radicial

extension, which does not change the genus. This contradicts the definition of the stable

model, as V has insufficiently many marked points. 2

Note that Proposition 2.24 shows that if p exactly divides |G|, then there are no

inseparable tails. But there can be inseparable tails if a higher power of p divides |G|.

An étale tail of X is called primitive if it contains a branch point other than the point

at which it intersects the rest of X. Otherwise it is called new. This follows [Ray99]. An

inseparable tail that does not contain the specialization of any branch point will be called

a new inseparable tail.

Definition 2.25. Consider an étale tail Xb of X. Suppose Xb intersects the rest of X

at xb. Let Y b be a component of Y lying above Xb, and let yb be a point lying above xb.

The generalized ramification invariant σb for Xb is the conductor of higher ramification

for the extension ÔY b,yb/ÔXb,xb
with respect to the upper numbering (see §2.3).

Lemma 2.26. The generalized ramification invariants σb lie in 1
mG
Z.

Proof. The extension ÔY b,yb/ÔXb,xb
has Galois group Iyb of the form Z/proZ/` for some
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r, `. Since Iyb ⊆ G, the quotient of Iyb by its maximal prime-to-p central subgroup is

Z/pr o Z/m′, where m′|mG. The ramification invariant over x for Y → Xb is the same

as for Y /H → Xb, see Remark 3.3. So σb ∈ 1
m′Z ⊆ 1

mG
Z. 2

2.6 The auxiliary cover

Retain the assumptions from the beginning of §2.5 (in particular, G need not have a

cyclic p-Sylow subgroup). Assume that f : Y → X is a G-cover defined over K as in

§2.5 with bad reduction, so that X is not just the original component. Following [Ray99,

§3.2], we can construct an auxiliary cover f : Y aux → X with (modified) stable model

(faux)st : (Y aux)st → Xst and (modified) stable reduction f
aux : Y aux → X, defined over

some finite extension R′ of R, with the following properties:

• Above an étale neighborhood of the union of those components of X other than

étale tails, the cover Y st → Xst is induced (see §1.4) from the connected Galois

cover (Y aux)st → Xst.

• The modified stable reduction Y aux → X of Y aux → X is given first by replacing the

components of Y above étale tails with Katz-Gabber covers (see [Kat86, Theorem

1.4.1]), and then taking one connected component.

We will explain what “modified” means in a remark following the construction of the

auxiliary cover. The construction is almost entirely the same as in [Ray99, §3.2], and

we will not repeat the details. Instead, we give an overview, and we mention where our

construction differs from Raynaud’s.
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Let Bét index the étale tails of X. Subdividing Bét, we index the set of primitive tails

by Bprim and the set of new tails by Bnew. We will write Xb for the tail indexed by some

b ∈ Bét.

The construction proceeds as follows: From Y remove all of the components that lie

above the étale tails of X (as opposed to all the tails—this is the only thing that needs

to be done differently than in [Ray99], where all tails were étale). Now, what remains

of Y is possibly disconnected. We throw out all but one connected component, and call

what remains V . For each Xb, b ∈ Bprim, let ab be the branch point of f specializing to

Xb, let xb be the point where Xb intersects the rest of X, and let prmb be the index of

ramification above xb, with mb prime-to-p. At each point of V above xb, we attach to

V a Katz-Gabber cover (cf. [Kat86, Theorem 1.4.1], [Ray99, Théorème 3.2.1]), branched

of order mb (with inertia groups isomorphic to Z/mb) at the specialization of ab and of

order prmb (with inetria groups isomorphic to Z/pr oZ/mb) at xb, where pr is the order

of inertia of the generic point of the interior component containing xb. We choose our

Katz-Gabber cover so that above the complete local ring of xb on Xb, it is isomorphic to

the original cover. It is the composition of a cyclic cover of order mb with a cover of order

pr branched at one point. Note that if mb = 1, we have eliminated a branch point of the

original cover.

For each b ∈ Bnew, we do the same thing, except that we introduce an (arbitrary)

branch point αb of ramification index mb somewhere on the new tail under consideration.

Let Y aux → X be the cover of k-schemes we have just constructed.
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As in [Ray99, §3], one shows that we can lift Y aux → X to a cover (faux)st : (Y aux)st →

Xst over R′. The generic fiber faux : Y aux → X is branched exactly at the branch points of

f and at a new point ab of index mb for each new tail b ∈ Bnew (unless one of the branch

points of f was eliminated, as noted above). Each ab specializes to the corresponding

branch point αb introduced in the previous paragraph. Keep in mind that there is some

choice here in how to pick the new branch points—depending on the choice of αb, we

can end up choosing ab to be any point that specializes to Xb. The generic fiber faux is

referred to as the auxiliary cover. It is a Galois cover with Galois group Gaux (equal to

the decomposition group of V inside G). The group Gaux is a subgroup of G. It satisfies

the properties that we have mentioned for the auxiliary cover.

Remark 2.27. It may happen that the actual stable reduction of the cover faux : Y aux →

X is a contraction of Y aux as defined above (or that it is not even defined, as we may

have eliminated a branch point by passing to the auxiliary cover). This happens only if X

has a primitive tail Xb for which mb = 1, and for which the Katz-Gabber cover inserted

above Xb has genus zero. Then this tail, and possibly some components inward, would

be contracted in the stable reduction of faux. We use the term modified stable reduction

to mean that we do not perform this contraction, so f : Y aux → X is indeed as given in

the construction above. When we are not in this situation, the modified stable model is

the same as the stable model.

If we are interested in understanding fields of moduli (or more generally, fields of

definition of the stable model), it is in some sense good enough to understand the auxiliary

cover, as the following lemma shows.

34



Lemma 2.28. If Kst is the smallest field over which the modified stable model (faux)st :

(Y aux)st → Xst of the auxiliary cover faux is defined, then the stable model f st of f is

defined over Kst.

Proof. (cf. [Wew03b], Theorem 4.5) Take σ ∈ Γst, the absolute Galois group of Kst. We

must show that fσ ∼= f and that σ acts trivially on the stable reduction f : Y → X of f .

Let f̂ : Ŷ → X̂ be the formal completion of fst at the special fiber and let f̂aux : Ŷ aux → X̂

be the formal completion of (faux)st at the special fiber. For each étale tail Xb of X, let

xb be the intersection of Xb with the rest of X. Write Db for the formal completion of

Xb\{xb} in XRst . Db is a closed formal disk, which is certainly preserved by σ. Also, let

U be the formal completion of X \⋃bXb in XRst .

Write V = Ŷ ×X̂ U . We know from the construction of the auxiliary cover that

V = IndGGaux Ŷ
aux ×X̂ U .

Since σ preserves the auxiliary cover and acts trivially on its special fiber, σ acts as an

automorphism on V and acts trivially on its special fiber. By uniqueness of tame lifting,

Eb := Ŷ ×X̂Db is the unique lift of Y ×X (Xb\{xb}) to a cover of Db (if Xb is primitive, we

require the lifting to fix the branch point). This means that σ acts as an automorphism

on Ŷ ×X̂ Db as well.

Define Bb := U ×X̂ Db, the boundary of the disk Db. A G-cover of formal schemes

Ŷ → X̂ such that Ŷ ×X̂U ∼= V and Ŷ ×X̂Db ∼= Eb is determined by a patching isomorphism

ϕb : V ×U Bb ∼→ Eb ×Db Bb

for each b. Then the isomorphism ϕb is determined by its restriction ϕb to the special
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fiber.

Let Xb,∞ be the generic point of the completion of Xb at xb, and define Y b,∞ (resp.

Y
aux
b,∞) := Y ×XX

aux
b,∞ (resp. Y ×XXb,∞). Then Y b,∞ = IndGGauxY

aux
b,∞. Since σ acts trivially

on Y
aux
b,∞, it acts trivially on Y b,∞, and thus on the isomorphism ϕb. Thus f̂σ ∼= f̂ , and

by Grothendieck’s Existence Theorem, fσ ∼= f .

Lastly, we must check that σ acts trivially on f . This is clear away from the étale

tails. Now, for each étale tail Xb, we know σ acts trivially on Xb, so it must act vertically

on Y b := Y ×X Xb. But σ also acts trivially on Y
aux
∞,b. Since Y∞,b is induced from Y

aux
∞,b,

σ acts trivially on Y∞,b. Therefore, σ acts trivially on Y b. 2

For us, the most important thing about the auxiliary cover is the following:

Proposition 2.29. If we assume that a p-Sylow subgroup of G is cyclic, then the group

Gaux has a normal subgroup of order p.

Proof. Let U be an irreducible component of Y aux lying above the original component

X0. Since we are assuming that X is not smooth, X0 is not a tail and thus any component

of Y aux lying above X0 is generically inseparable by Proposition 2.22. So let IU be the

inertia group of the generic point of U and let Q1 be the unique subgroup of IU of order p.

We claim Q1 is normal in Gaux. To see this, note that conjugation by an element in Gaux

will send IU to the inertia group IU ′ of the generic point of some other component U ′ of

Y
aux lying above X0. But by the construction of the auxiliary cover, U ′ can be connected

to U by a path that passes only through components that do not lie above étale tails. The

inertia groups of these components are all nontrivial cyclic p-groups, by Proposition 2.22.
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We know from Corollary 2.18 that for any two such adjacent components, the inertia

group of one contains the inertia group of the other. Since a nontrivial cyclic p-group

contains exactly one subgroup of order p, both inertia groups contain the same subgroup

of order p. Thus IU ′ contains Q1, and we are done. 2

Lastly, in the case that a p-Sylow subgroup of G is cyclic, we make a further simpli-

fication of the auxiliary cover, as in [Ray99, Remarque 3.1.8]. By Proposition 2.29 and

Corollary 2.5, Gaux is p-solvable. Its quotient by its maximal normal prime-to-p subgroup

N is, by Corollary 2.4, isomorphic to Z/pn o Z/m, where m|(p − 1) and the action of

Z/m on Z/pn is faithful. So we replace Y aux with Y str := Y aux/N , which is a branched

Gstr := Gaux/N -cover of X. This is called the strong auxiliary cover. Constructing the

strong auxiliary cover is one of the key places where it is essential to assume that a p-

Sylow subgroup of G is cyclic, as otherwise the Gaux does not necessarily have such nice

group-theoretical properties.

The branching on the generic fiber of the strong auxiliary cover is as follows: At each

point of X where the branching index of f was divisible by p, the branching index of fstr

is a power of p (as Gstr has only elements of p-power order and of prime-to-p order). At

each branch point specializing to an étale tail b ∈ Bét, the ramification index is mb, where

mb|(p− 1) (cf. [Ray99, §3.3.2]).

The following two lemmas show that it will generally suffice to look at the strong

auxiliary cover instead of the auxiliary cover. Let ((fstr)st)′ : ((Y str)st)′ → (Xst)′ be

the minimal modification of (fstr)st centered on the special fiber such that all images of

ramification points of faux : Y aux → X in Y str specialize to distinct points on the special
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fiber. This modification is only necessary if there exists such a point on Y str that is not

a ramification point of fstr. Write (fstr)′ : (Y str)′ → X
′ for the stable reduction.

Lemma 2.30. If L is a field of definition of ((fstr)st)′, then the stable model of q :

Y aux → Y str can be defined over an extension M of L such that p - [M : L].

Proof. We first claim that all branch points of q are rational over L. Let σ ∈ GL. Then

σ permutes the points above any given branch point of faux. By the construction of

((fstr)st)′, each of these points specializes to a different point on (Y str)′. Since σ acts

trivially on (Y str)′, we have that σ fixes each branch point of q. Thus, the ramification

points are L-rational. In particular, the branch points of q are L-rational and tame.

Now we apply a variant of [Säı97, Théorème 3.7] to conclude. In [Säı97], it is assumed

that Y aux → Y
str has no smooth branch points. But the argument works so long as

we have a canonical L-rational point specializing to each of these smooth branch points,

because we can use [Ful69, Theorem 4.10] to lift the disk covers corresponding to these

branch points. See [Säı97] for more details. 2

Lemma 2.31. Let f : Z → X be a G-Galois cover with bad reduction as in §2.5 (we do

not assume that a p-Sylow subgroup of G is cyclic). Suppose G has a normal subgroup N

such that p - |N |. Let f ′ : Z ′ := Z/N → X be the quotient cover. Let M be a field over

which the stable model of both f ′ : Z ′ → X and the quotient map q : Z → Z ′ are defined.

Then the stable model of f is defined over an extension M ′ of M such that p - [M ′ : M ].

Proof. We first show that the field of moduli of f is defined over a prime-to-p extension

of M . Let σ ∈ GM . Clearly, f is defined as a mere cover over M . From the fundamen-
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tal exact sequence (cf. §1.1), we obtain a homomorphism h : GM → Out(G). By our

assumptions on f ′ and q′, the image of h consists of those α ∈ Out(G) which restrict

to an inner automorphism on N and descend to an inner automorphism on G/N . Take

a representative α for α in Aut(G) that fixes N and G/N pointwise. If g ∈ G, then

α(g) = sg, for some s ∈ N . By our assumptions on α, αi(g) = sig. Since s ∈ N , we know

s|N | is trivial, so α|N | is trivial. So GM/(kerh) has prime-to-p order, and thus the field of

moduli M ′′ of f (relative to M) is a prime-to-p extension of M .

Now, let M ′/M ′′ be the minimal extension over which the stable model of f is defined.

Then Gal(M ′/M ′′) acts on f . By assumption, this action descends to a trivial action on

f ′, and is trivial on q. Thus it is trivial on f . So in fact M ′ = M ′′, which satisfies

p - [M ′′ : M ]. 2

In particular, Lemma 2.31 applies when Z = Y aux and Z ′ = Y str.

While the Galois group of the (strong) auxiliary cover is simpler than the original

Galois group of f , we generally are made to pay for this with the introduction of new

branch points. Understanding where these branch points appear is key to understanding

the minimal field of definition of the stable reduction of the auxiliary cover. See in

particular §4.3.

2.7 Reduction of µp-torsors and deformation data

Let R, K, and k be as in §2.4, and let π be a uniformizer of R. Assume further that R

contains the pth roots of unity. For any scheme or algebra S over R, write SK and Sk
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for its base changes to K and k, respectively. Recall that we normalize the valuation of p

(not π) to be 1. Then v(π) = 1/e, where e is the absolute ramification index of R. This

is not always the standard convention, but it will be useful later in the thesis.

2.7.1 Reduction of µp-torsors

We start with a result of Henrio:

Proposition 2.32 ([Hen99], Chapter 5, Proposition 1.6). Let X = Spec A be a flat affine

scheme over R, with relative dimension ≤ 1 and integral fibers. We suppose that A is a

factorial R-algebra which is complete with respect to the π-adic valuation. Let YK → XK

be a non-trivial, étale µp-torsor, given by an equation yp = f , where f is invertible in AK .

Let Y be the normalization of X in YK ; we suppose the special fiber of Y is integral (in

particular, reduced). Let η (resp. η′) be the generic point of the special fiber of X (resp.

Y ). The local rings OX,η and OY,η′ are thus discrete valuation rings with uniformizer

π. Write δ for the valuation of the different of OY,η′/OX,η. We then have two cases,

depending on the value of δ:

• If δ = 1, then Y = Spec B, with B = A[y]/(yp − u), for u a unit in A, unique

up to multiplication by a pth power in A×. We say that the torsor YK → XK has

multiplicative reduction.

• If 0 ≤ δ < 1, then δ = 1−n(p−1
e ), where n is an integer such that 0 < n ≤ e/(p−1).

Then Y = Spec B, with

B =
A[w]

( (πnw+1)p−1
πpn − u)

,
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for u a unit of A. Also, u is unique in the following sense: If an element u′ ∈ A×

could take the place of u, then there exists v ∈ A such that

πpnu′ + 1 = (πpnu+ 1)(πnv + 1)p.

If δ > 0 (resp. δ = 0), we say that the torsor YK → XK has additive reduction

(resp. étale reduction).

Remark 2.33. (i) In [Hen99], Proposition 2.32 is stated for X → Spec R with dimen-

sion 1 fibers, but the proof carries over without change to the case of dimension 0

fibers as well (i.e., the case where A is a discrete valuation ring containing R). It is

this case that will be used in §2.7.2 to define deformation data.

(ii) The proof proceeds essentially by showing that, after multiplication by a pth power

in AK , we can choose f to be in one of the following forms:

• f ∈ A and the reduction f of f in Ak is not a pth power in Ak (this is the case

of multiplicative reduction).

• f is of the form 1 + πpnu, where n < e/(p− 1), u ∈ A, and the reduction u of

u in Ak is not a pth power in Ak (this is the case of additive reduction).

• f is of the form 1 + πpnu, where n = e/(p− 1), u ∈ A, and the reduction u of

u in Ak is not of the form xp − x in Ak (this is the case of étale reduction).

(iii) If f is of the form 1 + g, where v(g) > p/p− 1, then f is a pth power in A. This can

be seen, for instance, by using the binomial expansion of p
√

1 + g, which converges

because A is π-adically complete.
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(iv) In the cases of multiplicative and additive reduction, the extension Yk → Xk is seen

to be inseparable. In the case of étale reduction, it is an Artin-Schreier extension

of the form wp − w = u, where w and u are the reductions of w and u to Bk and

Ak, respectively.

The following corollary will be used repeatedly in analyzing the stable reduction of

covers (see §4.2, 4.3):

Corollary 2.34. Assume that R contains the pnth roots of unity. Suppose X = Spec A,

where A = R{T}. Let YK → XK be a µpn-torsor given by the equation yp
n

= f , where

f = 1 +
∑∞

i=1 aiT
i such that mini v(ai) = n+ 1

p−1 and v(ai) > n+ 1
p−1 for all i divisible

by p. Define h to be the largest i such that v(ai) = n+ 1
p−1 . Then YK → XK splits into a

disjoint union of pn−1 µp-torsors, each with étale reduction birationally equivalent to an

Artin-Schreier cover with conductor h.

Proof. By Remark 2.33 (ii) and Lemma 2.14, we will be done if we can show that f has

a pn−1st root 1 + au in A such that a ∈ R, v(a) = p
p−1 , and the reduction u of u in

Ak = k[T ] is of degree h with only prime-to-p degree terms. We can write f = 1 + bw

with b ∈ R and v(b) = n+ 1
p−1 . Suppose n > 1. Then, using the binomial theorem, a pth

root of f is given by

p
√
f = 1 +

1/p
1!
bw +

(1/p)((1/p)− 1)
2!

(bw)2 + · · · .

Since v(b) > p
p−1 , this series converges, and is in A. It can be written as p

√
f = 1 + cx,

where c = b/p ∈ R, v(c) = (n− 1) + 1
p−1 , and x is congruent to w mod π. We repeat this
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process n− 1 times to obtain a pn−1st root of f

pn−1√
f = 1 + au,

where a ∈ R has v(a) = 1 + 1
p−1 = p

p−1 and u ≡ w (mod π). If n = 1, then we skip

the above process (i.e., we “repeat this process” zero times) and set a = b, u = w. By

assumption, w has degree h and only prime-to-p degree terms, and we are done. 2

Remark 2.35. The above argument shows that if an element r in R can be written as

1 + w, with v(w) > n + 1
p−1 , then r has a pnth root in R, which is congruent to 1 + w

pn

modulo π.

2.7.2 Deformation Data

Let W be any smooth proper curve over k. Let H be a finite group and χ a 1-dimensional

character H → F×p . A deformation datum over W of type (H,χ) is an ordered pair (V , ω)

such that V →W is an H-Galois branched cover, ω is a meromorphic differential form on

V that is either logarithmic or exact (i.e., ω = du/u or du for u ∈ k(V )), and η∗ω = χ(η)ω

for all η ∈ H. If ω is logarithmic (resp. exact), it is called multiplicative (resp. additive).

When V is understood, we will sometimes speak of the deformation datum ω.

If (V , ω) is a deformation datum, and w ∈ W is a closed point, we define mw to be

the order of the prime-to-p part of the ramification index of V → W at w. Define hw to

be ordv(ω) + 1, where v ∈ V is any point which maps to w ∈ W . This is well-defined

because ω transforms nicely via H. Lastly, define σx = hw/mw. We call w a critical point

of the deformation datum (V , ω) if (hw,mw) 6= (1, 1). Note that every deformation datum
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contains only a finite number of critical points. The ordered pair (hw,mw) is called the

signature of (V , ω) (or of ω, if V is understood) at w, and σw is called the invariant of

the deformation datum at w.

Proposition 2.36. If N ⊆ ker(χ), then (V , ω) descends naturally to a deformation datum

(V /N, ω′). If, in addition, p - |N |, then (V /N, ω′) has the same invariant at all points of

W as (V , ω).

Proof. Since V is a smooth curve, Ωk(V )/k, the space of meromorphic differential forms on

V , is a one-dimensional k(V )-module. So we can choose any t ∈ k(V ), and write ω = fdt

for some f ∈ k(V ). Let us choose t ∈ k(V )N . Then, since ω is fixed by N , we must have

f ∈ k(V )N as well. Since k(V )N = k(V /N), ω can naturally be viewed as an element of

Ωk(V /N)/k, that is, a meromorphic differential on V /N . It clearly satisfies the properties

of a deformation datum. Thus we have descended ω to ω′.

Now, assume p - |N |. Let v ∈ V lie above a point v′ ∈ V /N and above a point w ∈W .

Let (hw,mw) be the signature of ω at w, and let (h′w,m
′
w) be the signature of ω′ at w.

Suppose the ramification index of v in V → V /N is µ. It is then clear that mw = µm′w. In

a formal neighborhood of v′, we can use Kummer theory to write the cover V → V /N by

the equation k[[t]] ↪→ k[[t]][τ ]/(τµ − t), where t is a local parameter at v′ and τ is a local

parameter at v. By the definition of h′w, we can write ω′ = (cth
′
w−1 +

∑∞
i=1 cit

h′w−1+i)dt.

In terms of τ , ω can then be written as (cτµ(h′w−1) +
∑∞

i=1 ciτ
µ(hw−1)+i)µτµ−1dτ . Then

hw = µ(h′w − 1) + (µ− 1) + 1 = µh′w. So σ′w = h′w/m
′
w = hw/mw = σw. 2

Proposition 2.37. Let (V , ω) be a deformation datum of type (H,χ). Let |H/ ker(χ)| =
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µ, and let v ∈ V be a tamely ramified point lying over w ∈W . Then σw ∈ 1
µZ.

Proof. Let Iv ⊆ H be the inertia group of φ : V → X at v. Then |Iv/(Iv ∩ ker(χ))| |µ.

In a formal neighborhood of v, we can use Kummer theory to see that φ is given by the

equation k[[t]] ↪→ k[[t]][τ ]/(τmw − t), where t is a local parameter at w and τ is a local

parameter at v. Expanding ω out as a Laurent series in τ , we can write

ω =

(
cτhw−1 +

∞∑
i=1

ciτ
hw−1+i

)
dτ.

Let g be a generator of Iv such that g∗(τ) = ζmwτ . Since gµ ∈ ker(χ), we have that

(gµ)∗ω = ω. Thus (gµ)∗(τhw−1dτ) = τhw−1dτ . So µhw is a multiple of mw. Therefore,

σw = hw
mw
∈ 1

µZ. 2

Proposition 2.38 (Local vanishing cycles formula, cf. [Wew03b], p. 998).

(i) Suppose (V , ω) is a deformation datum with V → W tamely ramified. Let B be the

set of critical points of (V , ω). Suppose the genus of W is gW . Then

∑
b∈B

(σb − 1) = 2gW − 2. (2.7.1)

(ii) Suppose we are in the situation of part (i), except that V → W is wildly ramified

above one point w ∈W , such that the inertia group of a point v above w is Z/pn o

Z/mw with p - mw. For 1 ≤ i ≤ n, let hi be the ith lower jump of the extension

ÔV ,v/ÔW,w (see §2.3), and let σi = hi/mw. We maintain the notation (hw,mw)

for the signature of ω at w, and σw for the invariant at w (note that there is not

necessarily any relation between the σi and σw). Let B be the set of critical points
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for ω other than w. Then we have

σw
pn
− 1−

n∑
i=1

p− 1
pi

σi +
∑
b∈B

(σb − 1) = 2gW − 2. (2.7.2)

Proof. To (i): Let gV be the genus of V , and d the degree of the map V → W . By the

Hurwitz formula,

2gV − 2 = d(2gW − 2) + d(
∑
b∈B

(1− 1
mb

)).

But 2gV − 2 is the degree of a differential form on V , so 2gV − 2 =
∑

b∈B
d
mb

(hb− 1). The

local vanishing cycles formula then follows.

To (ii): Using Lemma 2.11 (i), the Hurwitz formula this time yields

2gV − 2 = d(2gW − 2) + d
∑
b∈B

(1− 1
mb

) +
d

pnmw
(pnmw − 1 +

n∑
i=1

hip
n−i(p− 1)).

Furthermore, the degree of a differential form on V is(∑
b∈B

d

mb
(hb − 1)

)
+

d

pnmw
(hw − 1).

Substituting this for 2gV − 2 and rearranging yields the formula. 2

Deformation data arise naturally from the stable reduction of covers. Say f : Y → X

is a branched G-cover as in §2.5, with stable model fst : Y st → Xst defined over Kst

and stable reduction f : Y → X. Much information is lost when we pass from the stable

model to the stable reduction, and deformation data provide a way to retain some of this

information. This process is described in detail in [Hen99, 5, §1] in the case where the

inertia group of a component has order p. We generalize it here to the case where the
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inertia group is cyclic of order pr. For this construction, we can replace Kst with as large

a finite extension as we wish. In particular, we assume that Kst contains a pth root of

unity.

Construction 2.39. Let V be an irreducible component of Y with generic point η and

nontrivial generic inertia group I ∼= Z/pr ⊂ G. Write B = ÔY st,η, and C = BI , the

invariants of B under the action of I. Then B (resp. C) is a complete, mixed characteristic,

discrete valuation ring with residue field k(V ) (resp. k(V )p
r
). I ∼= Z/pr acts on B; for

0 ≤ i ≤ r, we write Ii for the subgroup of order pi in I, and we write Ci for the fixed ring

BIr−i+1 . Thus C1 = C. Then for 1 ≤ i ≤ r, the extension Ci ↪→ Ci+1 is an extension of

complete discrete valuation rings satisfying the conditions of Proposition 2.32 but with

relative dimension 0 instead of 1 over Rst (see Remark 2.33 (i)). On the generic fiber, it is

given by an equation yp = z, where z is well-defined up to raising to a prime-to-p power

in C×i /(C
×
i )p. We make z completely well-defined in C×i /(C

×
i )p by fixing a pth root of

unity µ and a generator α of Aut(Ci+1/Ci) and forcing α(z) = µz. In both the case of

multiplicative and additive reduction, Proposition 2.32 yields an element

u ∈ Ci ⊗Rst k = k(V )p
r−i+1 ∼= k(V )p

r
,

the last isomorphism coming from raising to the pi−1st power. In the case of multiplicative

reduction, write ωi = du/u, and in the case of additive reduction, write ωi = du. In both

cases, ωi can be viewed as a differential form on k(V )p
r
. Write V ′ for the curve whose

function field is C ⊗Rst k = k(V )p
r ⊂ k(V ). Then each ωi is a meromorphic differential

form on V
′.
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Furthermore, let D be the decomposition group of V , and write H = D/I. Then if

W is the component of X lying below V , we have maps V → V
′ →W , with W = V

′
/H.

Any η ∈ H has a canonical conjugation action on I, and also on the subquotient Ji of I

given by Ir−i+1/Ir−i. This action is given by a homomorphism χ : H → (Fp)×. We claim

to have constructed, for each i, a deformation datum (V ′, ωi) of type (H,χ) over W .

Everything is clear except for the transformation property, so let η ∈ H. Then for z

as in the construction, taking a pth root of z and of η∗z must yield the same extension,

so η∗z = cpzq with c ∈ Ci and q ∈ {1, . . . , p − 1}. It follows that η∗y = ζcyq for ζ some

pth root of unity. It also follows that η∗(ωi) = qωi. Let α be a generator of Ji. We must

show that ηαη−1 = αq.

Write α∗y = µy for some, possibly different, pth root of unity µ. Then

(ηαη−1)∗(y) = (η−1)∗α∗η∗y = (η−1)∗α∗ζcyq = (η−1)∗µqζcyq = µqy.

Thus ηαη−1 = αq, and we are done. This completes Construction 2.39.

For the rest of this section, we will only concern ourselves with deformation data

that arise from the stable reduction of branched G-covers Y → X = P1 where G has a

cyclic p-Sylow subgroup, via Construction 2.39. We will use the notations of §2.5 and

Construction 2.39 throughout this section. Note that in the case of such a cover, we have

introduced a collection of deformation data for each irreducible component of Y with

nontrivial inertia. The size of the collection is r, where the size of the inertia group is pr.

We will sometimes call the deformation datum (V ′, ω1) (resp. the differential form ω1)
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the bottom deformation datum (resp. the bottom differential form) for V ′.

From [Wew03b, Proposition 1.7], we have the following result in the case of inertia

groups of order p. The proof is the same in our case:

Proposition 2.40. Say (V ′, ω) is a deformation datum arising from the stable reduction

of a cover as in Construction 2.39, and let W be the component of X lying under V ′.

Then a critical point x of the deformation datum on W is either a singular point of X or

the specialization of a branch point of Y → X with ramification index divisible by p. In

the first case, σx 6= 0, and in the second case, σx = 0 and ω is logarithmic.

We should also note the easy fact that any deformation datum (V , ω) such that ω has

a simple pole (equivalently, there is a critical point with σ = 0) is multiplicative, whereas

any deformation datum (Z, ω) such that ω has a multiple pole (equivalently, there is a

critical point where σ is negative) is additive. This is a property of differential forms in

characteristic p, and has nothing to do with the transformation property.

Proposition 2.41. Let (V ′, ω1) be the bottom deformation datum for some irreducible

component V of Y . If ω1 is logarithmic, then so are all ωi’s arising from Construction

2.39. Furthermore, ωi = ω1 for all i.

Proof. As was mentioned before Construction 2.39, we may assume that Kst contains the

prth roots of unity. By Kummer theory, we can write B⊗RstKst = (C⊗RstKst)[θ]/(θp
r−

θ1). After a further extension of Kst, we can assume v(θ1) = 0.

If ω1 is logarithmic, then the reduction θ1 of θ1 to k is not a pth power in C ⊗Rst k.

We thus know that ω1 = dθ1/θ1. It is then easy to see that ωi arises from the equation
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yp = θi where θi = pi−1√
θ1. Under the pi−1st power isomorphism ι : Ci⊗Rst k → C⊗Rst k,

ι(θi) = θ1. So ωi is logarithmic, and is equal to dθ1
θ1

, which is equal to ω1. 2

The next two results, Propositions 2.42 and 2.44, each generalize one part of the

theorem [Hen99, 5, Theorem 1.10]. They relate deformation data, conductors of Artin-

Schreier covers, épaisseurs of annuli, and differents of extensions. They are extremely

important in what follows, as they are the “guts” behind the cleaner interface provided

by Lemmas 2.46 and 2.47. The proof of Theorem 1.4 depends heavily on Lemmas 2.46

and 2.47. First we must set up some notation.

Suppose W and W ′ are intersecting components of X, and let V and V ′ be intersecting

components of Y lying above them. Let x be the intersection point of W and W
′, and

let y be a point of V ∩ V ′ above x. By Corollary 2.18, assume without loss of generality

that the inertia group of V contains that of V ′. Let I ∼= Z/pr (resp. I ′ ∼= Z/pr′) be the

inertia group of V (resp. V ′). By Proposition 2.22, r ≥ 1. For each i, 1 ≤ i ≤ r, there is

a deformation datum with differential form ωi associated to V . For each i′, 1 ≤ i′ ≤ r′,

there is a deformation datum ω′i′ associated to V
′. Let mx be the prime-to-p part of

the ramification index at x. The inclusion Ô
W
′
,x
↪→ Ô

V
′
,y

induced from the cover is a

composition

Ô
W
′
,x
↪→ S ↪→ Ô

V
′
,y

where Ô
W
′
,x
↪→ S is a totally ramified Galois extension with group I ∼= Z/pr−r′ o Z/mx

and S ↪→ Ô
V
′
,y

is a purely inseparable extension of degree pr
′
. Let J be the inertia group

of y in G, and let Ji (resp. Ii) be the unique subgroup of order pi in J (resp. I). The

following proposition gives a compatibility between deformation data, and also relates
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deformation data to the geometry of Y .

Proposition 2.42. With x as above, let (hi,x,mx) (resp. (h′i′,x,mx)) be the signature of

ωi (resp. ω′i′) at x. Write σi,x = hi,x/mx and σ′i′,x = h′i′,x/mx. Then the following hold:

(i) If i = i′ + r − r′, then hi,x = −h′i′,x and σi,x = −σ′i′,x.

(ii) If i ≤ r − r′, then hi,x = h, where h is the upper (equivalently lower) jump in the

extension SIr−r′−i+1 ↪→ SIr−r′−i. Also, σi,x = σ, where σ is the upper jump in the

extension SIr−r′−i+1oZ/mx ↪→ SIr−r′−i.

Proof. (cf. [Wew03b, Proposition 1.8]) The group J acts on the annulus A = Spec ÔY st,y.

The proposition follows from [Hen99, 5, Proposition 1.10] applied to the formal annulus

A/(Jr−i+1) and an automorphism given by a generator of Jr−i+1/Jr−i considered as a

subquotient of J . The statement about σi,x follows by dividing both sides of the equation

hi,x = h by mx. Note that what we call hi,x, Henrio calls −m. 2

Remark 2.43. Consider the Z/pr−r′oZ/mx-extension Ô
W
′
,x
↪→ S. If the ji are its lower

jumps (see §2.3), then Proposition 2.42, combined with [OP08, Lemma 3.1], shows that

ji = hi,x. By Remark 2.12, the conductor of this extension is equal to(
r−r′−1∑
i=1

p− 1
pi

σi,x

)
+

1
pr−r′−1

σr−r′,x.

In this same context, let δi be the valuation of the different of the extension Ci ↪→ Ci+1

giving rise to ωi (we will call δi the different corresponding to ωi). Likewise, let δ′i′ be
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the valuation of the different of the extension C ′i′ ↪→ C ′i′+1 giving rise to ω′i′ . We have

the following proposition relating the change in the differents and the épaisseur of the

annulus corresponding to x:

Proposition 2.44. Assume the notations of Proposition 2.42. Let εx be the épaisseur of

the formal annulus corresponding to x.

• If i = i′ + r − r′, then δi − δ′i′ = εxσi,x(p−1)
pi

.

• If i ≤ r − r′, then δi = εxσi,x(p−1)
pi

.

Proof. As in the proof of Proposition 2.42, let A = Spec ÔY st,y. If ε is the épaisseur of

A/(Jr−i+1), then [Hen99, 5, Proposition 1.10] shows that δi−δ′i′ = εhi,x(p−1) in the case

i = i′ + r − r′ and δi − 0 = εhi,x(p − 1) in the case i < r − r′. [Ray99, Proposition 2.3.2

(a)] shows that εx = pimxε. The proposition follows. 2

The above propositions require a great deal of notation. But the quantities which we

define now will encapsulate most of the information we need.

Definition 2.45. Let W be a pr-component of X, and let ωi, 1 ≤ i ≤ r, be the deforma-

tion data above W .

• For any w ∈W , define the effective invariant σeff
w by

σeff
w =

(
r−1∑
i=1

p− 1
pi

σi,w

)
+

1
pr−1

σr,w.

Note that this is a weighted average of the σi’s.
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• Define the effective different δeff by

δeff =

(
r−1∑
i=1

δi

)
+

p

p− 1
δr.

Lemma 2.46. Assume the notations of Proposition 2.44. Let σeff
x be the effective invari-

ant at x of the deformation data above W . Let δeff (resp. (δ′)eff) be the effective different

above W (resp. W ′). Then

δeff − (δ′)eff = σeffεx.

Proof. We sum the equations from Proposition 2.44 for 1 ≤ i ≤ r − 1. Then we add p
p−1

times the equation for i = r. This exactly gives δeff − (δ′)eff = σeffεx. 2

The following lemma will be used repeatedly in Chapter 4:

Lemma 2.47. Let W be an inseparable component of X which is not a tail, and let

w ∈ W be a singular point of X such that W ≺ w. Suppose that f is monotonic from

W . Denote by σeff
w the effective invariant for the deformation data above W at w. Let Π

be the set of branch points of f with branching index divisible by p that specialize outward

from w. Let B index the set of étale tails Xb lying outward from w. Then the following

formula holds:

σeff
w − 1 =

∑
b∈B

(σb − 1)− |Π|.

Proof. In the context of this proof, call a set S of singular points of X admissible for w

if the following hold:

- For each s ∈ S, w � s.

- For each tail Xb �W , there exists exactly one s ∈ S such that s ≺ Xb.
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Clearly, the set {w} is admissible for w, as is the set Smax containing all of the intersection

points of tails of X lying outward from w with the interior of X. Suppose w′ � w is

a singular point of X lying on the intersection of two components W ′ ≺ W
′′. Then

we write σi,w′ (resp. σeff
w′) to mean the invariant for the ith differential form (resp. the

effective invariant) at w′ for the deformation data above W ′. For an admissible set S for

w, write ΠS for the set of branch points of f with branching index divisible by p that

specialize outward from some element of S. We will prove the lemma by proving the

stronger statement that for all admissible S for w,

∑
s∈S

(σeff
s − 1) + |ΠS | =

∑
b∈B

(σb − 1). (2.7.3)

The lemma is exactly (2.7.3) for S = {w}.

We will first prove (Step 1) that F (S) :=
∑

s∈S(σeff
s − 1) + |ΠS | is independent of S.

We will then prove (Step 2) that for S = Smax, (2.7.3) holds, thus proving the lemma.

Step 1: We show that F (S) is independent of S by “outward induction on S.” Sup-

pose we are given an admissible set S for w. Pick some s0 ∈ S. Then s0 lies on the

intersection of two components L ≺ M . Let T be the set of singular points of X lying

on M , excluding s0. Then S ∪ T\{s0} is also admissible for w. It is clear that every

admissible S can be obtained from {w} by a repetition of this process. Let αM = 1 if

there is a branch point of f with branching index divisible by p specializing to M . Oth-

erwise, αM := 0. We need to show that F (S) = F (S ∪ T\{s0}); in other words, that

σeff
s0 − 1 =

∑
t∈T (σeff

t − 1)− αM .

We will use the local vanishing cycles formulas (2.7.1) and (2.7.2). First, assume
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that L and M are both pr-components, for some common r. Then, for each deformation

datum ωi above M , 1 ≤ i ≤ r, the local vanishing cycles formula (2.7.1) combined with

Propositions 2.40 and 2.42 yields

(−σi,s0 − 1) +
∑
t∈T

(σi,t − 1)− αM = −2. (2.7.4)

In other words,

σi,s0 − 1 =
∑
t∈T

(σi,t − 1)− αM . (2.7.5)

For 1 ≤ i ≤ r − 1, we multiply the ith equation (2.7.5) by p−1
pi

to obtain an equation Ei.

For i = r, we multiply it by 1
pr−1 to obtain Er. Note that these coefficients add up to 1.

Then we add up the equations Ei. By the definition of the effective invariant and the fact

that these coefficients add up to 1, we obtain σeff
s0 − 1 =

∑
t∈T (σeff

t − 1)− αM .

Now assume that L is a pr-component and M is a pr−j-component. Then, for each

deformation datum ωi above M , 1 ≤ i ≤ r − j, the local vanishing cycles formula (2.7.2)

combined with Propositions 2.40 and 2.42 yields(
−σi+j,s0

pj
− 1−

j∑
α=1

p− 1
pα

σα,s0

)
+
∑
t∈T

(σi,t − 1)− αM = −2. (2.7.6)

In other words,

σi+j,s0
pj

− 1 +
j∑

α=1

p− 1
pα

σα,s0 =
∑
t∈T

(σi,t − 1)− αM (2.7.7)

For 1 ≤ i ≤ r−j−1, we multiply the ith equation (2.7.7) by p−1
pi

to obtain an equation Ei.

For i = r− j, we multiply it by 1
pr−j−1 to obtain Er−j . Note that these coefficients add up

to 1. Then we add up the equations Ei. Again, by the definition of the effective invariant

and the fact that these coefficients add up to 1, a straightforward calculation shows that
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we obtain σeff
s0 − 1 =

∑
t∈T (σeff

t − 1)−αM . We have shown that F (S) is independent of S.

Step 2: We calculate F (Smax). Write Smax = Sét ∪ Sinsep, where Sét is the set of

points of S lying on the intersection of an étale tail with the rest of X, and Sinsep is

the set of points in S lying on the intersection of an inseparable tail with the rest of

X. If sb ∈ Sét lies on the intersection of a pr-component and an étale tail Xb, then

σeff
sb

=
(∑r−1

i=1
p−1
pi
σi,sb

)
+ 1

pr−1σr,sb . Proposition 2.42, combined with Remark 2.43, shows

that this is equal to σb.

Now suppose s ∈ Sinsep lies on the intersection of a pr-component and an inseparable

tail Xs which is a pr−j-component. Then for each deformation datum ωi above Xs,

1 ≤ i ≤ r − 1, (2.7.2) shows that(
−σi+j,s

pj
− 1−

j∑
α=1

p− 1
pα

σα,s

)
− αXs

= −2. (2.7.8)

In other words:

σi+j,s
pj

+
j∑

α=1

p− 1
pα

σα,s = 1− αXs
. (2.7.9)

Again, for 1 ≤ i ≤ r − j − 1, we multiply the ith equation (2.7.9) by p−1
pi

to obtain an

equation Ei. For i = r − j, we multiply it by 1
pr−j−1 to obtain Er−j . As before, we add

up the equations Ei to obtain σeff
s = 1− αXs

.

Thus,

F (Smax) =
∑
b∈B

(σb − 1)−
∑

s∈Smax

(αXs
) + |ΠSmax | =

∑
b∈B

(σb − 1).

This is Equation (2.7.3), so we are done. 2
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Chapter 3

Combinatorial Properties of the

Stable Reduction

Assume the notations of §2.5. In this chapter, G is a finite group with a cyclic p-Sylow

subgroup P of order pn. Recall that mG = |NG(P )/ZG(P )|, and that we will write m

instead of mG when G is understood. Also, faux : Y aux → X (resp. fstr : Y str → X) is

the auxiliary cover (resp. the strong auxiliary cover) with Galois group Gaux (resp. Gstr);

see §2.6. Let Q be the normal subgroup of order p in Gstr (Proposition 2.29).

3.1 Vanishing cycles formulas

The vanishing cycles formula ([Ray99, Théorème 3.3.5]) is a key formula that helps us

understand the structure of the stable reduction of a branched G-cover of curves in the

case where p exactly divides the order of G. Here, we generalize the formula to the case
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where G has a cyclic p-Sylow group of arbitrary order. For any étale tail Xb, recall that

mb is the index of tame inertia at the point of intersection xb of Xb with the rest of X,

and σb is the generalized ramification invariant (Definition 2.25). Set hb = mbσb. By

Lemma 2.26, hb is an integer.

Theorem 3.1. Let f : Y → X, X not necessarily P1, be a G-Galois cover as in §2.5,

where G has a cyclic p-Sylow subgroup. Let B0 be the set of branch points. As in §2.5,

there is a smooth model XR of X where the specializations of the branch points do not

collide, f has bad reduction, and f : Y → X is the stable reduction of f . Let Π ⊂ B0

be the set of branch points which have branching index divisible by p. Let Bnew be an

indexing set for the new tails and let Bprim be an indexing set for the primitive tails. Let

Bét = Bnew ∪Bprim. Let gX be the genus of X. Then we have the formula

2gX − 2 + |Π| =
∑

b∈Bnew

(σb − 1) +
∑

b∈Bprim

(σb − 1). (3.1.1)

Theorem 3.1 has the immediate corollary:

Corollary 3.2. Assume further that f is a three-point cover of P1. Then

1 =
∑

b∈Bnew

(σb − 1) +
∑

b∈Bprim

σb. (3.1.2)

Proof (of the theorem). Write |Gstr| = pνm, where p - m. Write Ỹ str = Y str/Q. Let g

(resp. g̃) be the genus of Y str (resp. Ỹ str). Also, let Πi be the set of points of X which

are branched of index pi in Y str → X. Thus, Π =
⋃ν
i=1 Πi. The Hurwitz formula applied

to Y str → X and Ỹ str → X respectively gives us the following two equalities:
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2g − 2 = pνm

2gX − 2 +
∑
b∈Bét

(1− 1
mb

) +
ν∑
i=1

|Πi|(1−
1
pi

)

 (3.1.3)

and

2g̃ − 2 = pν−1m

2gX − 2 +
∑
b∈Bét

(1− 1
mb

) + +
ν∑
i=1

|Πi|(1−
1

pi−1
)

 . (3.1.4)

Since all of our schemes are flat over R, pa(Y
str) = g and pa(Ỹ

str
) = g̃. Now, note that

when we quotient out by Q, the morphism is radicial on the special fiber except above the

tails, as Q is contained in the inertia group of every irreducible component lying above

the interior of X. This means that the contribution from components above the interior

of X to pa(Y
str) is the same as their contribution to pa(Ỹ

str
) Above each tail Xb, Y

str

consists of irreducible components Y b, each of which is the composition of a cyclic cover

of order mb branched at two points∞b and 0b with a cyclic p-power cover totally ramified

at the unique point of Y b lying above ∞b. Then Corollary 2.16 with group Gstr of order

pνm applies to each tail Xb. We obtain that

g − g̃ =
1
2
pν−1(p− 1)m

∑
b∈Bét

(
(1− 1

mb
) + (σb + 1)− 2

) . (3.1.5)

But subtracting the difference of (3.1.3) and (3.1.4) and dividing by two, we have

g − g̃ =
1
2
pν−1(p− 1)m

2gX − 2 +
∑
b∈Bét

(1− 1
mb

) +
ν∑
i=1

|Πi|

 . (3.1.6)

Setting the right-hand sides of (3.1.5) and (3.1.6) equal yields

2gX − 2 + |Π| =
∑
b∈Bét

(σb − 1).

2
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Remark 3.3. Since the upper numbering is invariant under quotients, it is clear that

quotienting out by a normal subgroup of prime-to-p order does not affect the quantity σb.

Thus the quantity σb as we have calculated it is not different than if we had calculated it

using the standard auxiliary cover, rather than the strong auxiliary cover.

The above formula can be generalized. Recall that for every i, 1 ≤ i ≤ n, we write Πi

for the set of branch points of f which have branching index divisible by pi. Let Bd,e be

an indexing set for the pd-components of X which intersect a pe-component, e > d, and

such that f is monotonic from the pd-component. For b ∈ Bd,e, let xb be the (unique)

point of intersection of the pd-component indexed by b with a pe-component. Let yb be a

point lying above xb, and let Ozb = OZ/pd

Y ,yb
. Finally, let σi,b be the ith upper jump for the

extension OX,xb ↪→ Ozb . If i = e − d, we will sometimes just write σb for σi,b. Then we

have the following formula:

Proposition 3.4. For each r, 0 ≤ r ≤ n− 1, such that there exists some nonempty Bd,e

with d ≤ r < e,

2gX − 2 + |Πr+1| ≥
∑
d,e

d≤r<e

∑
b∈Bd,e

(σe−r,b − 1). (3.1.7)

If f is monotonic, we have equality in (3.1.7).

Proof. Again, consider the strong auxiliary cover fstr, which has Galois group Gstr ∼=

Z/pν o Z/m for some ν > r and stable reduction f
str. Let (f str)′ be the quotient of the

cover fstr by the unique subgroup Qr ⊂ Gstr isomorphic to Z/pr. Also, let Qr+1 be the

unique subgroup of Gstr isomorphic to Z/pr+1. Let g be the genus of Y str/Qr and let g̃
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be the genus of Y str/Qr+1. Then, as in the proof of Theorem 3.1,

g − g̃ =
1
2
pν−r−1(p− 1)m

2gX − 2 +
∑
b∈Bét

(
1− 1

mb

)
+ |Πr+1|

 . (3.1.8)

Since f is monotonic from each component indexed by Bd,e, each component lying

outward fromBd,e and each component inBd,e is étale in the special fiber of Y str
/Qr. Also,

any prime-to-p branch point of fstr/Qr specializes either to or outward from a component

indexed by Bd,e. Above the unique wildly branched point of Xb for any b ∈ Bd,e, the

conductor of higher ramification for f ′ is σe−r,b. We note that quotienting out the cover

f ′ by the subgroup Qr+1/Qr < Gstr/Qr of order p cannot increase the contribution to the

arithmetic genus from those components of Y str
/Qr lying above components of X which

do not lie outward from some component indexed by Bd,e. In fact, if f is monotonic,

then the action of Qr+1/Qr is radicial on these components and does not affect their

contribution to the arithmetic genus at all.

By flatness, we have g = pa(Y
str
/Qr) and g̃ = pa(Y

str
/Qr+1).Now, we apply Corollary

2.16 to obtain

g − g̃ ≥ 1
2
pν−r−1(p− 1)m

 ∑
b∈Bd,e

(σe−r,b + 1− 2) +
∑
b∈Bét

(
1− 1

mb

) , (3.1.9)

with equality if f is monotonic. Combining (3.1.8) and (3.1.9) yields the proposition. 2

Remark 3.5. We have some weak generalizations in the case where a p-Sylow subgroup

of G is abelian, not necessarily cyclic. They are partially worked out and will not be

included at this time. Their proofs are based on a version of the proof of Theorem 3.1

that does not use the auxiliary cover.
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3.2 Further properties

We maintain the assumptions of §2.5, along with the assumption that a p-Sylow subgroup

of G is cyclic of order pn. As this section progresses, we will add more assumptions.

Lemma 3.6. If b indexes an inseparable tail Xb, then all σi,b’s (page 60) are integers.

Proof. Consider the stable model of the strong auxiliary cover fstr. We know that any

branch point of this cover has either prime-to-p or p-power order. By Proposition 2.17,

any branch point on the generic fiber which specializes to a point in Xb must be of p-

power ramification index. In particular, the ramification index will be pd, where Xb is

a pd-component. Consider an irreducible component V b of Y str lying above Xb. Then

V b/(Z/pd)→ Xb is totally ramified above the point of intersection x of Xb and the rest of

X, and étale elsewhere. If we quotient out by the (normal) p-Sylow subgroup of the inertia

group I of V b/(Z/pd)→ Xb above x, we obtain a tame cover branched at no more than

one point, which must be trivial. Thus I is a p-group, and the upper jumps corresponding

to the ramification of V b/(Z/pd) → Xb are integral by the Hasse-Arf Theorem ([Ser79,

V, Theorem 1]). Hence each σi,b is integral by Remark 3.3. 2

Lemma 3.7. Let x be a singular point of X such that there are no étale tails Xb with

x ≺ Xb. Then for any deformation datum above an irreducible component containing x,

the invariant σx is an integer.

Proof. Take the strong auxiliary cover fstr : Y str → X of f . By Proposition 2.36, this

does not change the invariant σx. Now, f str has Galois group Z/pν o Z/m, for some
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ν ≤ n. By construction, fstr has no branch points of prime-to-p branching index which

specialize outward from x.

Any irreducible component V of Y str has decomposition group Z/pr o Z/m′, where

r ≤ ν and m′|m. If W is the component of X below V , then it is impossible for W to

have exactly one point where the branching index is not a p-power (if this were the case,

we could quotient out by the subgroup of order pr to obtain a tamely ramified cover of

W branched at one point, which is impossible). This means that at intersection points of

inseparable tails lying outward from x with the rest of X, the branching index is a power

of p (as the intersection point is the only possible branch point of the inseparable tail).

By inward induction, the branching index of x is a p-power. By the definition of σx, we

have σx ∈ Z. 2

Lemma 3.8. (i) A new tail Xb (or even an inseparable tail which does not contain the

specialization of any branch point) has σb ≥ 1 + 1/m.

(ii) If Xc is any pd-tail to which no branch point of f specializes and that borders a

pe-component, then σb ≥ pe−d−1.

(iii) If Xb is a primitive tail that borders a pe-component, then σb ≥ pe−1/m.

Proof. If we assume that (i) is false, [Ray99, Lemme 1.1.6] shows that each irreducible

component above Xb is a genus zero Artin-Schreier cover of Xb. Since no ramification

points specialize to these components, this contradicts the three-point condition of the

stable model.

For (ii) and (iii) we cite [Pri06, Lemma 19], which shows that σi+1,b ≥ pσi,b for all
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i where the statement makes sense. Recall that σb = σe−d,b. Now, if Xb is inseparable,

then σb ∈ Z (by Lemma 3.6). If σb = 1, then the components above the tail are genus

zero by [Ray99, Lemme 1.1.6], and they violate the three-point condition of the stable

model. So σb ≥ 2 for these inseparable tails, and (ii) is proved. Also, σ1,b ≥ 1/m for Xb

primitive. Then (iii) follows. 2

Corollary 3.9. Let x be a branch point of f with branching index exactly divisible by

pr. Suppose that x specializes to x, which lies on an irreducible component W of X such

that f is monotonic from W . Then either W is the original component or W intersects

a pr+j-component, for some j > 0.

Proof. By Proposition 2.19, W is a pr-component. We note that since W contains the

specialization of a branch point with branching index divisible by p, the deformation data

above W are multiplicative (and thus identical, by Proposition 2.41). Now, assume that

W is not the original component. Let S be the set of singular points of X lying on W ,

and let s0 ∈ S be the unique point of S such that s0 ≺ W . For each s ∈ S′ := S\{s0},

we consider σeff
s . Let Bs index the set of all étale tails Xb such that s ≺ Xb. Since x

specializes to W , no branch point of f can specialize to any component outward from

W . In particular, each Xb is a new tail. Because f is monotonic from W , we can apply

Lemma 2.47 to show that

σeff
s − 1 =

∑
b∈Bs

(σb − 1).

By Lemma 3.8, each σb in the above sum is greater than 1, so σeff
s ≥ 1.

Since the deformation data above W are all the same, this shows that each deformation
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datum ω must have σs ≥ 1 for all s ∈ S′. For a contradiction, assume that W does not

intersect any pr+j-components with j > 0. Then any irreducible component V lying above

W is tamely ramified, and we can apply the local vanishing cycles formula (2.7.1). Since

the only critical points of ω lie in S ∪ {x}, and σx = 0, we see that σs0 ≤ 0. But σs0 = 0

contradicts Proposition 2.40, and σs0 < 0 is impossible because ω is multiplicative. Thus

we have our contradiction, and the corollary is proved. 2

We now give some sufficient criteria for the stable reduction of f to be monotonic. In

particular, they are satisfied in all of the cases in Theorem 1.4.

Proposition 3.10. (i) If G is p-solvable, then f is monotonic.

(ii) If T is a component of X such that there are no new étale tails Xb � T , then f is

monotonic from T .

(iii) If f is a three-point cover of P1, and m = 2, then f is monotonic.

Proof. In cases (i) and (iii), assume for a contradiction that W is a maximal component

of X for ≺ such that f is not monotonic from W . Suppose that W is a pi-component. Let

W
′ be a pj-component intersecting W such that W ≺W ′ and j > i. Let {w} = W

′ ∩W .

To (i): By Corollary 2.4, we know that there is a prime-to-p group N such that G/N ∼=

Z/pn o Z/m. Since quotienting out by a prime-to-p group does not affect monotonicity,

we may assume that G ∼= Z/pn o Z/m. Consider the morphism Xst → X ′ that is “the

identity” on XKst and contracts all components of X outward from and including W ′. If

Y ′ is the normalization of X ′ in Kst(Y ), then Y ′ is obtained from Y st by contracting all
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of the components of the special fiber above those components contracted by Xst → X ′.

Let y be a point of Y ′ lying over the image of w in X ′ (which we call w, by abuse of

notation), and consider the map of complete germs Ŷ ′y → X̂ ′w. This map is Galois with

Galois group G′ ∼= Z/pj oH, where |H| is prime-to-p, by Proposition 2.17 and the fact

that f is monotonic from W
′. Let V̂v be the quotient of Ŷ ′y by the subgroup of G of order

pi. Then φ : V̂v → X̂ ′w is Galois with Galois group Z/pj−i oH. Note that w is a smooth

point of X ′, as we have contracted only a tree of projective lines (of course, y may be

quite singular, but it is still a normal point of Y ′).

Now, φ is totally ramified above the point w, but it is unramified above the height

1 prime (π), where π is a uniformizer of R, because we have quotiented out the generic

inertia of W . Using purity of the branch locus ([Sza09, Theorem 5.2.13]), we see that φ

must be ramified over some height 1 prime (t) such that the scheme cut out by t intersects

the generic fiber. Since we have been assuming from the beginning that the branch points

of YK → XK do not collide on the special fiber X0, and we have not contracted X0, there

is at most one branch point on the generic fiber that can specialize to w, and thus (t) cuts

the generic fiber in exactly one point, and it is the only height 1 prime above which φ is

ramified. So φ is étale outside of the scheme cut out by (t). We are now in the situation

of [Ray94, Lemme 6.3.2], and we conclude that the ramification index at (t) is prime-to-p.

But this contradicts the fact that the ramification index above w is divisible by pj−i.

To (ii): We take the auxiliary cover faux of f . Since there are no new étale tails lying

outward from T , the construction of faux does not introduce any branch points beyond
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T . Also, the Galois group Gaux of faux is p-solvable (§2.6). So the proof of part (i) carries

through exactly to show that faux has monotonic stable reduction from T . Since the

construction of faux does not alter any generic inertia groups of components of X, faux

has monotonic stable reduction from T if and only if f does. So the stable reduction of

f is monotonic from T .

To (iii): Let Σ be the largest set of pj-components of X such that Σ contains W
′

and the union U of the components in Σ is connected. Let S be the set of all singu-

lar points of X that lie at the intersection of a component in Σ with a component not

in Σ. By assumption, W /∈ Σ. So w ∈ S. Also, since f is assumed to be monotonic

from W
′, every s ∈ S lies on a pj−as-component, with as > 0. Let Xs ∈ Σ contain s,

and let V s be an irreducible component of Y lying above Xs. By Proposition 2.42, the

bottom differential form ω for V s has positive invariant σs. Furthermore, (V s, ω) is a

deformation datum of type (DV s
/IV s , χ), where DV s

is the decomposition group of the

component V s and IV s is the inertia group. Since m = 2, and χ comes from the character

of DV s
/IV s corresponding to the conjugation action on IV s (Construction 2.39), we have

that (|DV s
/IV s |/|DV s

/IV s ∩ ker(χ)|) | 2. Since V s → Xs is tamely ramified everywhere,

in particular above s, Proposition 2.37 shows that σs ∈ 1
2Z. It follows that σs ≥ 1

2 .

Note that, by Corollary 3.9, no branch point of f with ramification index divisible

by p can specialize to any component in Σ. Then, by repeated application of the local
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vanishing cycles formula (2.7.1), we obtain the equation

∑
s∈S

(σs − 1) = −2.

We know that each term in this sum is at least −1
2 . We claim that at most two of the

terms can be non-integral. This will contradict the equation.

We show the claim. For s ∈ S, we know by Lemma 3.7 that σs ∈ Z unless there is an

étale tail Xb such that Xs ≺ Xb. But since m = 2, the vanishing cycles formula (3.1.2),

in conjunction with with Lemma 2.26, shows that there can be at most two étale tails.

So at most two elements s of S can have non-integral σs. This proves the claim, and we

obtain the desired contradiction. 2

For the rest of this section, assume that f : Y → X is a three-point cover of P1 with

bad reduction.

Proposition 3.11. (i) Suppose f is monotonic. The stable reduction X has at most

one layer of p-components, i.e., no two p-components intersect each other.

(ii) If G is p-solvable with m > 1, then there is at most one layer of pi-components for

each 0 ≤ i ≤ n.

Proof. To (i): Suppose, for a contradiction, that X has a maximal chain of intersecting

p-components of length greater than one, the maximal component of the chain being W .

Then, by Proposition 2.24, W is not a tail, and monotonicity shows that any component

lying outward from W is étale (and a tail, by Proposition 2.22). Consider a deformation

datum (V , ω) corresponding to some irreducible component V of Y lying above W . By
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Proposition 2.40, the only possibilities for critical points of ω are points of intersection

of W with étale tails, the point of intersection of W with the immediately preceding

irreducible component of X, or the specialization of a wild branch point of f to X. Now,

for xb the intersection of W with an étale tail Xb, the vanishing cycles formula (3.1.2)

shows that σxb is an integer if and only if Xb is the only étale tail of X. If this is the

case, then W intersects exactly two components of X, and V is of genus zero, as it is a

degree p inseparable extension of a tame cyclic cover of X branched at two points. Then

V is totally ramified above these two points, and the three-point condition of the stable

model is violated unless a wild branch point specializes to some w ∈W . But this violates

Corollary 3.9.

Now assume that there is more than one étale tail of X. Let BW index the set of étale

tails Xb intersecting W , and let C be the set of all critical points of ω. For each b ∈ BW ,

let xb be the intersection of W with Xb. The vanishing cycles formula (3.1.2), along with

Lemma 3.8, shows that 0 < σxb < 1 for Xb primitive and 1 < σxb < 2 for Xb new. Also,∑
b∈BW 〈σxb〉 ≤ 1. Since

∑
c∈C(σc − 1) = −2, we have

∑
c∈C σc ∈ Z. Let w be the point

of intersection of W and the interior part of X. Then w is the only element of C\BW (no

wild branch point specializes to W by Corollary 3.9). Thus
∑

c∈C〈σc〉 = 1. This means

that
∑

c∈C(bσcc − 1) = −3. Since bσbc − 1 is −1 for a primitive tail Xb and 0 for a new

tail Xb, then bσwc equals −1 if there is a branch point specializing outward from w or

−2 if there is no such branch point. We are now in the situation of [Wew03a, Lemma

2.8], which shows that the deformation datum on V is not additive. Since σw < 0, the

deformation datum has multiple poles above w, so it is not multiplicative either. This
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contradiction finishes the proof of (i). Notice that this contradiction did not depend on

the three-point condition for the stable model.

To (ii): Since G is p-solvable, f is monotonic by Proposition 3.10. The case i = 0

follows immediately from Proposition 2.22. Since G is p-solvable, there is a prime-to-p

normal subgroup H ≤ G such that G/H ∼= Z/pn o Z/m, where the action of Z/m on

Z/pn is faithful (Corollary 2.4). Let h : Z → X be the corresponding cover with Galois

group G/H. Since m > 1, G/H is not cyclic, and thus h is branched at three points.

In addition, at least two of those points must be branched of prime-to-p-order, because

otherwise h would have a quotient which is a Z/m-cover branched at fewer than two

points (using that all branching indices are prime to p or powers of p). Thus the stable

reduction h has at least two primitive tails.

Let fst : Y st → Xst be the stable model of f , with f : Y → X the stable reduction.

Say there are two intersecting pi-components of X, for some i > 0.

Consider the unique subgroup H ′ ⊆ G which contains H such that H ′/H ∼= Z/pi−1.

Then fst/H ′ is a semistable model of a three-point cover with at least two primitive

tails that contains two intersecting p-components. In this case, since the contradiction

obtained in part (i) does not rely on the three-point condition of the stable model, so it

gives us a contradiction here. 2

Lemma 3.12. If G is p-solvable with m > 1, then the original component is a pn-

component, and all differential forms above the original component are multiplicative.

Proof. Since G is p-solvable, we know by Corollary 2.4 that f : Y → X has a quotient
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cover Y ′ → X with Galois group Z/pnoZ/m, and thus a quotient cover h : Z → X with

Galois group Z/p o Z/m. If all branch points of h are of prime-to-p ramification index,

then [Wew03a, §1.4] shows that h is of multiplicative type in the language of [Wew03a].

Then h has bad reduction by [Wew03a, Corollary 1.5], and the original component for

the stable reduction Z → X is a p-component. Furthermore, the deformation datum on

the irreducible component of Z above the original component of X is multiplicative (also

due to [Wew03a, Corollary 1.5]).

If h has a branch point x with ramification index divisible by p, then h has bad re-

duction (if h had good reduction h, then h would be generically étale, but not tamely

ramified–this cannot happen unless branch points collide on the special fiber). By Propo-

sition 2.19, x specializes to a p-component. By Proposition 3.11, this is the original

component X0, which is the only p-component. The deformation datum above X0 must

be multiplicative here, as it contains the specialization of a branch point with p dividing

the branching index (see after Proposition 2.40).

So in all cases, the original component is a p-component for h with multiplicative

deformation datum. Thus the “bottom” differential form above X0 for f is multiplicative.

Now, consider the Z/pn-cover Y ′ → Z ′ := Y ′/(Z/pn). If Y ′ has stable model (Y ′)st

and stable reduction Y
′, let (Z ′)st := (Y ′)st/(Z/pn). Then there is a canonical map

(Z ′)st → Xst. Say V ′ is an irreducible component of the special fiber of (Z ′)st lying above

X0, let η be its generic point, and consider the ring C := Ô(Z′)st,η. The normalization of

Spec C in Y ′ is given, after a possible extension of Kst, by an equation yp
n

= u. Since

the bottom differential form above X0 for f is multiplicative, the reduction u of u is not
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a pth power in the residue field of C. This means that there exists only one point of

Y
′ above η, and thus by monotonicity, X0 is a pn-component. Finally, Proposition 2.41

shows that all the differential forms above X0 for f are multiplicative. 2

Proposition 3.13. (i) If G is p-solvable with m > 1, then there are no inseparable tails.

(ii) If G is p-solvable with m > 1, then there are no new tails.

Proof. To (i): Say there is an inseparable tail Xb that is a pi-component with ramification

invariant σb. By Lemma 3.6, σb is an integer. By Lemma 3.8, σb > 1 if Xb does not contain

the specialization of any branch point. Assume for the moment that this is the case. Then

σb ≥ 2. We let f ′ : Y/H → X be the unique quotient cover of f : Y → X with Galois

group Z/pn−i o Z/m. We know f ′ is branched at three points, with at least two having

prime-to-p ramification index. Thus the stable reduction f
′ has at least two primitive

tails. It also has a new tail corresponding to the image of Xb, which has ramification

invariant σb ≥ 2. Then the right-hand side of (3.1.2) for the cover f ′ is greater than 1.

The left-hand side equals 1, so we have a contradiction.

We now prove that no branch point of f specializes to Xb. Such a branch point x

would have ramification index pis, where p - s.

Let H ′ be such that G/H ′ ∼= Z/pn o Z/m (Corollary 2.4). Then in Y/H ′ → X, x

would have ramification index pi. So in f ′ : Z = Y/H → X, x would have ramification

index 1. Thus Z → X would be branched in at most two points, which contradicts the

fact that f ′ is not cyclic.
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To (ii): Suppose there is a new tail Xb with ramification invariant σb. If σb ∈ Z, we

get the same contradiction as in the inseparable case. If σb /∈ Z, then Xb is branched in

only one point with inertia group Z/pioZ/mb for i ≥ 1, mb > 1. Let Y b be an irreducible

component of Y lying above Xb. If P is a p-Sylow subgroup of G, consider the quotient

cover Y /P → X. The image of Y b in Y /P is a cover of Xb branched in one point of

ramification index mb > 1. This is a contradiction. 2
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Chapter 4

Proof of the Main Theorem

In this chapter, we will prove Theorem 1.4. Let f : Y → X = P1 be a three-point Galois

cover defined over Q. For an embedding ι : Q ↪→ Qurp , let fι be the base change of f

to Qurp via ι. The following proposition shows that, for the purposes of Theorem 1.4, we

need only consider covers defined over Qurp .

Proposition 4.1. Let Kgl be the field of moduli of f (with respect to Q) and let Kloc,ι be

the field of moduli of fι with respect to Qurp . Fix n ≥ 0, and suppose that for all embeddings

ι, the nth higher ramification groups of Kloc,ι/Qurp for the upper numbering vanish. Then

all the nth higher ramification groups of Kgl/Q above p for the upper numbering vanish.

Proof. Pick a prime q of Kgl above p. We will show that the nth higher ramification

groups at q vanish. Choose a place r of Q above q. Then r gives rise to an embedding

ιr : Q ↪→ Qurp preserving the higher ramification filtrations at r for the upper numbering

(and the lower numbering). Specifically, if K/Qurp is a finite extension such that the

nth higher ramification group for the upper numbering vanishes, then the nth higher
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ramification group for the upper numbering vanishes for ι−1
r (K)/Q at the unique prime

of ι−1
r (K) below r. By assumption, the nth higher ramification group for the upper

numbering vanishes for Kloc,ιr/Qurp . So in order to prove the proposition, it suffices to

show that the field of moduli Kgl of f is contained in K ′ := ι−1
r (Kloc,ιr).

Pick σ ∈ GK′ . Then σ extends by continuity to a unique automorphism τ in GKloc,ιr .

By the definition of a field of moduli, f τιr
∼= fιr . But then fσ ∼= f . By the definition of a

field of moduli, Kgl ⊆ K ′. 2

So, in order to prove Theorem 1.4, we can consider three-point covers defined over

Qurp . In fact, we generalize slightly, and consider three-point covers defined over algebraic

closures of complete mixed characteristic discrete valuation fields with algebraically closed

residue fields. In particular, throughout this chapter, K0 is the fraction field of the ring

R0 of Witt vectors over an algebraically closed field k of characteristic p. Also write

Kn := K0(ζpn), with valuation ring Rn. Let G be a finite group with a cyclic p-Sylow

subgroup of order pn, and m = |NG(P )/ZG(P )|. We assume f : Y → X = P1 is a

three-point G-Galois cover of curves, a priori defined over some finite extension K/K0.

Since K has cohomological dmension 1, the field of moduli of f relative to K0 is the same

as the minimal field of definition of f that is an extension of K0 ([CH85, Prop. 2.5]). We

will therefore go back and forth between fields of moduli and fields of definition without

futher notice.

In the next three sections, we deal separately with the case of a p-solvable group G

with m > 1, the case of a group G with m = 1, and the case of a group G with m = 2.

In most cases, we in fact determine more than we need for Theorem 1.4; namely, we
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determine bounds on the higher ramification filtrations of the extension Kst/K0, where

Kst is the minimal field of definition of the stable model of f . Our default smooth model

XR of X is always the unique one so that the specializations of 0, 1, and∞ do not collide

on the special fiber.

4.1 The case where G is p-solvable and m > 1

We know by Corollary 2.4 that G has a quotient of the form G/N ∼= Z/pn oZ/m, where

the action of Z/m on Z/pn is faithful. So we begin by considering only covers where

G ∼= Z/pn o Z/m, the action of Z/m on Z/pn is faithful, and m > 1. Our first aim will

be to show that such a cover is defined as a mere cover over K0. We will deal with the

general p-solvable case for m > 1 afterwards.

4.1.1 The case of a Z/pn o Z/m-cover

Say f : Y → X is a three-point G-cover with G ∼= Z/pn o Z/m and the conjugation

action of Z/m is faithful. Now, there is an intermediate Z/m-cover h : Z → X where

Z = Y/(Z/pn). If g : Y → Y/N is the quotient map, then f = h ◦ g. Because it will be

easier for our purposes here, let us assume that the three branch points of f are at x1, x2,

and x3 which are elements of R0, none of which has the same reduction to k (in particular,

none is ∞). Since the mth roots of unity are contained in K0, the cover h can be given

birationally by the equation zm = (x − x1)a1(x − x2)a2(x − x3)a3 with 0 ≤ ai < m for

all i ∈ {1, 2, 3}, where a1 + a2 + a3 ≡ 0 (mod m). Fix a primitive mth root of unity ζm,

and a generator g ∈ Z/m such that g∗z = ζmz. Let f : Y → X be the stable reduction
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of f , relative to the standard smooth model XR = P1
R for some finite extension R/R0,

and let X0 be the original component of X. We know from Lemma 3.12 that X0 is a

pn-component, and all of the deformation data above X0 are multiplicative.

Consider the Z/p o Z/m-cover f ′ : Y ′ → X, where Y ′ is the quotient of Y by the

unique subgroup of order pn−1 of G. The stable reduction f
′ : Y ′ → X

′ of this cover

has a multiplicative deformation datum (ω, χ) over the original component X0, with

χ : Z/m ↪→ F×p such that g∗(ω) = χ(1)ω. For all x ∈ X0, recall that (hx,mx) is the

signature of the deformation datum at x, and σx = hx/mx (see §2.7.2). Also, since there

are no new tails (Proposition 3.13), Proposition 3.11 shows that the stable reduction X
′

consists only of the original component X0 along with a primitive étale tail Xi for each

branch point xi of f (or f ′) with prime-to-p ramification index. The tail Xi intersects X0

at the specialization of xi to X0.

Proposition 4.2. For i = 1, 2, 3, let xi be the specialization of xi to X0. For short, write

hi, mi, and σi for hxi, mxi, and σxi.

(i) For i = 1, 2, 3, hi ≡ ai/ gcd(m, ai) (mod mi).

(ii) In fact, the hi depend only on the Z/m-cover η : Z → X.

Proof. To (i): (cf. [Wew03a, Proposition 2.5]) Let Z0 be the unique irreducible component

lying above X0, and suppose that zi ∈ Z0 lies above xi. If ti is a formal parameter at zi,

we have

ω = (c0t
hi−1
i +

∞∑
j=1

cjt
hi−1+j
i )dti
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in a formal neighborhood of zi. Now, g∗ω = χ(1)ω. Thus (gai)∗ω = χ(ai)ω. Also, a local

calculation (using zm = (unit)(x − xi)ai) shows that (gai)∗ti = χ(gcd(m, ai))ti. Thus

(gai)∗ω = χ(hi gcd(m, ai))ω. Since χ(1) has order m, we conclude that

hi gcd(m, ai) ≡ ai (mod m). (4.1.1)

It is clear that the ramification index mi at xi is m/ gcd(m, ai). Dividing (4.1.1) by

gcd(m, ai) yields (i).

To (ii): Since we know the congruence class of hi modulo mi, it follows that the fractional

part 〈σi〉 of σi is determined by η : Z → X. But if xi corresponds to a primitive tail, we

know that 0 < σi < 1. If xi corresponds to a wild branch point, then σi = 0. Thus σi is

determined by 〈σi〉, so it is determined by h : Z → X. Since hi = σimi, we are done. 2

Corollary 4.3. The differential form ω corresponding to the cover f ′ : Y ′ → X is

determined (up to multiplication by a scalar) by h : Z → X.

Proof. Proposition 4.2 determines the divisor corresponding to ω from h : Z → X. Two

meromorphic differential forms on a complete curve can have the same divisor only if they

differ by a scalar multiple. 2

We will now show that h : Z → X determines not only the differential form ω, but

actually the entire cover f : Y → X as a mere cover. We will do this in several stages,

using an induction.

Proposition 4.4. Assume m > 1.
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(i) If f : Y → X is a three-point Z/pn o Z/m-cover (with faithful conjugation action of

Z/m on Z/pn) defined over some finite extension K/K0, then it is determined as a

mere cover by the map η : Z = Y/(Z/pn)→ X.

(ii) If f : Y → X is a three-point Z/pn o Z/m-cover (with faithful conjugation action

of Z/m on Z/pn) defined over some finite extension K/K0, its field of moduli (as

a mere cover) with respect to K0 is K0, and f can be defined over K0 (as a mere

cover).

(iii) In the situation of part (ii), the field of moduli of f (as a Z/pn o Z/m-cover) with

respect to K0 is Kn = K0(ζpn). Thus f is defined over Kn (as a Z/pnoZ/m-cover).

Proof. To (i): We first prove the case n = 1. Write (f ′)st : (Y ′)st → (X ′)st for the stable

model of f ′, let f ′ : Y ′ → X
′ be the stable reduction of f ′, and let X0 be the original

component of X ′. Write (Z ′)st for (Y ′)st/(Z/p) and Z
′ for Y ′/(Z/p). We know from

Corollary 4.3 that η determines (up to a scalar multiple) the logarithmic differential form

ω that is part of the deformation datum (Z0, ω) on the irreducible component Z0 above

X0. Let ξ be the generic point of Z0. Then ω is of the form du/u, where u ∈ k(Z0) is the

reduction of some function u ∈ Ô(Z′)st,ξ. Moreover, we can choose u such that the cover

Y ′ → Z ′ is given birationally by extracting a pth root of u (viewing u ∈ K(Z)∩Ô(Z′)st,ξ).

That is, K(Y ′) = K(Z)[t]/(tp − u). We wish to show that knowledge of du/u up to a

scalar multiple c ∈ F×p determines u up to raising to the cth power, and then possibly

multiplication by a pth power in K(Z) (as this shows Y ′ → X is uniquely determined as

a mere cover). This is clearly equivalent to showing that knowledge of du/u determines
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u up to a pth power.

Let us say that there exists u, v ∈ K(Z) ∩ O(Z′)st,ξ such that du/u = dv/v. Then

u = κv, with κ ∈ k. Since k is algebraically closed, κ is a pth power, and thus lifts to

some pth power κ in K. Multiplying v by κ, we can assume that u = v. Consider the

cover Y ′′ → Z given birationally by the field extension K(Y ′′) = K(Z)[t]/(tp−u/v). Since

u = v, we have that u/v is congruent to 1 in O(Z′)st,ξ. This means that the cover Y ′′ → Z

cannot have multiplicative reduction (see Remark 2.33 (i)). But the cover Y ′′ → Z → X

is a Z/p o Z/m-cover, branched at at most three points, so it must have multiplicative

reduction if it is nontrivial (Lemma 3.12). Thus it is trivial, which means that u/v is a

pth power in K(Z), i.e., u = φpv for some φ ∈ K(Z). This proves the case n = 1.

For n > 1, we proceed by induction. We assume that (i) is known for Z/pn−1 oZ/m-

covers. Given η : Z → X, we wish to determine u ∈ K(Z)×/(K(Z)×)p
n

such that K(Y )

is given by K(Z)[t]/(tp
n − u). By the induction hypothesis, we know that u is well-

determined up to multiplication by a pn−1st power. Suppose that extracting pnth roots

of u and v both give Z/pn o Z/m-covers branched at 0, 1, and ∞. Consider the cover

Y ′′ → Z → X given birationally by K(Y ′′) = K(Z)[t]/(tp
n − u/v). Since u/v is a pn−1st

power in K(Z), this cover splits into a disjoint union of pn−1 different Z/poZ/m-covers.

By part (i), each of these covers is given by extracting a pth root of some power of u

itself! So pn−1√
u/v = ucwp, where c ∈ (Z/p)×. Thus v = u1−pn−1cwp

n
, which means that

extracting pnth roots of either u or v gives the same mere cover.

To (ii): We know that the cyclic cover h of part (i) is defined over K0, because we

80



have written it down explicitly. Now, for σ ∈ GK0 , fσ is a Z/pn o Z/m-cover with quo-

tient cover h, branched at 0, 1, and ∞. By part (i), there is only one such cover, so

fσ ∼= f as mere covers. Thus the field of moduli of f as a mere cover with respect to K0

is K0. By [CH85], Proposition 2.5, K0 is also a field of definition.

To (iii): Since f is defined over K0 as a mere cover, it is certainly defined over Kn

as a mere cover. So we have a (not necessarily Z/p o Z/m-equivariant) isomorphism

φ : f → fσ for all σ ∈ GKn . Let α be the automorphism of Z/pn o Z/m such that for

all g ∈ Z/pn o Z/m, φα(g) = gφ. By Kummer theory, we can write Kn(Z) ↪→ Kn(Y ) as

a Kummer extension, with Galois action defined over Kn. This means that α(g) = g for

g ∈ Z/pn. Furthermore, h : Z → X is defined over K0 as a Z/m-cover. Thus, α(g) = g

for all g, where g represents the reduction of g to Z/m. But the only automorphisms of

Z/pn o Z/m satisfying both of these properties are inner, so α(g) = γgγ−1, for some γ

independent of g. Replacing φ with φγ gives a Z/pn o Z/m-equivariant automorphism

f → fσ, which shows that the field of moduli of f with respect to K0 is Kn. Since

K0 has cohomological dimension 1, we see that f : Y → X is defined over Kn as a

Z/pn o Z/m-cover. 2

We know from Proposition 4.4 that f is defined over K0 as a mere cover and over Kn

as a G-cover. Recall from Section 2.5 that the minimal field of definition of the stable

model Kst is the field cut out by the subgroup Γst ≤ GK0 that acts trivially on the stable

reduction f : Y → X. Recall also that the action of GKn centralizes the action of G.

Lemma 4.5. If g ∈ GKn acts on Y with order p and acts on an irreducible component

81



V of Y , then g acts trivially on V .

Proof. First, note that since each tail Xb of X is primitive (Proposition 3.13), each con-

tains the specialization of a K0-rational point, and thus g fixes that point along with the

point of intersection of Xb with the rest of X. Since the action of g on X has order p,

and there exist no nontrivial automorphisms of P1
k with order p, g fixes each tail of X

pointwise. Since g fixes the original component pointwise as well, g fixes all of X pointwise

by an easy inward induction. So if g acts on V , it acts “vertically,” as an element of D/I,

where D ⊆ G is the decomposition group of V and I is the inertia group. The group D/I

is of the form Z/pr o Z/m′ for some r ≤ n, 1 6= m′|m, and D/I has trivial center. But g

commutes with D/I, as it commutes with G. Thus g acts trivially on V . 2

Lemma 4.6. If g ∈ GKn acts on Y with order p, then g acts trivially on Y .

Proof. We already know that g acts trivially on X. Recall Lemma 3.12, which states

that the original component X0 of X is a pn-component. Then g acts trivially above X0,

because the cardinality of the fiber of f above any point of X0 is prime to p. We now

proceed by outward induction. Suppose g acts trivially above a tree T of components of

X containing the original component. Let W be a component of X intersecting T but

not lying in T . Let V be a component of Y lying above W . Then g acts on V , because it

fixes any intersection point of V with a component of Y lying above T . By Lemma 4.5,

g acts trivially on V . This completes the induction. 2

The following is the main proposition of §4.1.1:
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Proposition 4.7. Assume m > 1. Let f : Y → X be a three-point G-cover, where

G ∼= Z/pn o Z/m (with faithful conjugation action of Z/m on Z/pn). Then if Kst is the

field of definition of the stable model fst : Y st → Xst, we have that Kst/(Kst ∩Kn) is a

tame extension.

Proof. We need only show that no element of GKn acts with order p on Y , as this will

show that p - [Kst : Kn]. This follows from Lemma 4.6. 2

4.1.2 The case of a general p-solvable cover, m > 1

Proposition 4.8. Let G be a finite p-solvable group with a cyclic p-Sylow subgroup P of

order pn. Assume m = |NG(P )/ZG(P )| > 1. If f : Y → X is a three-point G-cover of P1,

then the field of moduli K of f relative to K0 is a tame extension of K0(ζpn). Furthermore,

if Kst/K0 is the minimal extension over which the stable reduction of f is defined, then

Kst/(Kst ∩Kn) is a tame extension. Furthermore, the nth higher ramification groups for

the upper numbering of the extension Kst/K0 vanish.

Proof. By Corollary 2.4, we know that there is a prime-to-p subgroup N such that G/N

is of the form Z/pnoZ/m. Let f : Y → X be a G-cover branched at 0, 1, and∞, defined

over some finite extension of K0, and let f † : Y † → X be the quotient G/N -cover. We

know from Proposition 4.7 that f † is defined over Kn as a G/N -cover and has stable

reduction defined over a tame extension K ′ of Kn. Let f : Y → X and f
† : Y † → X

be the stable reductions of f and f †, respectively. The branch points of Y → Y † are

all ramification points of f †, because f † is branched at three points. Thus, they do not

collide on Y
†. The usage of X for both covers is justified because the stable reduction
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of X is the same for both covers (in fact, Y † = Y /N). Therefore, Y → Y
† is a finite

prime-to-p map (an N -cover). Then Lemma 2.30 shows that the stable model of Y → Y †

is defined over a tame extension K ′′ of K ′. Lemma 2.31 then shows that the stable model

of f is defined over a tame extension K ′′′ of K ′′. Thus the field of moduli of f is contained

in K ′′′, which is a tame extension of K ′, and hence a tame extension of Kn.

By [Ser79, Corollary to IV, Proposition 18], the nth higher ramification groups for the

upper numbering of the extension Kst/K0 vanish. 2

4.2 The case where m = 1

Since NG(P ) = ZG(P ), Lemma 2.2 shows that G has a quotient of the form G/N ∼= Z/pn.

In particular, G is p-solvable. As in §4.1, we start by analyzing three-point Z/pn-covers.

Finding the field of moduli is easy in this case, so we give a complete description of the

stable reduction of such covers.

4.2.1 The case of a Z/pn-cover

Let G = Z/pn. Assume f : Y → X is a three-point G-cover branched at 0, 1, and ∞.

Proposition 4.9. The field of moduli of f : Y → X relative to K0 is Kn = K0(ζpn).

Proof. Since the field of moduli of f relative to K0 is the intersection of all extensions

of K0 which are fields of definition of f , it suffices to show that Kn is the minimal such

extension. By Kummer theory, f can be defined over K0 birationally by the equation

yp
n

= xa(x− 1)b, for some integral a and b. The Galois action is generated by y 7→ ζpny.

This cover is clearly defined over Kn as a G-cover.
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Since f is connected, f is totally ramified above at least one of the branch points x

(i.e., with index pn). Let y ∈ Y be the unique point above x. Assume f is defined over

some finite extension K/K0 as a G-cover, where Y and X are considered as K-varieties.

Then, by [Ray99, Proposition 4.2.11], the residue field K(y) of y contains the pnth roots

of unity. Since y is totally ramified, K(y) = K(x) = K, and thus K ⊇ Kn. So Kn is the

minimal extension of K0 which is a field of definition of f . 2

In the rest of this section, we give a full, explicit determination of the stable reduction

of three-point G-covers f : Y → X. We assume throughout that p 6= 2 (this case is

more difficult, and will not be included). From §2.2, such a cover is given by a triple

(x, y, (xy)−1) of elements of G such that x and y generate G. Since G is cyclic, we see

that at least two elements of the set {x, y, (xy)−1} have order pn. This means that f is

totally ramified above at least two points. Then f can be given by an equation of the

form yp
n

= cxa(x − 1)b. If f is totally ramified above 0, 1, and ∞, then a, b, and a + b

are prime to p. If f is totally ramified above two points (without loss of generality 0 and

∞) and ramified of index ps, s < n above 1, then a and a + b are prime to p, whereas

vp(b) = n− s.

As in §2.5, write fst : Y st → Xst for the stable model of f , and f : Y → X for the

stable reduction. Note that f is monotonic, by Proposition 3.10.

Lemma 4.10. The stable reduction X contains exactly one étale tail Xb, which is a new

tail. Let d = a
a+b .

(i) If f is totally ramified above 0, 1, and ∞, then Xb corresponds to the disk of radius
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|e| centered at d, where v(e) = 1
2(n+ 1

p−1).

(ii) If f is totally ramified above 0 and ∞, and ramified of order ps above 1, then Xb

corresponds to the disk of radius |e| centered at d, where v(e) = 1
2(2n− s+ 1

p−1).

Proof. By Lemma 2.26, the ramification invariant σ of any étale tail is an integer. Clearly

there are no primitive tails, as there are no branch points with prime-to-p branching in-

dex. By Lemma 3.8, any new tail has σ ≥ 2. By the vanishing cycles formula (3.1.2),

there is exactly one new tail Xb and its invariant σb is equal to 2.

To (i): Let e be an element of K0 with v(e) = 1
2(n + 1

p−1), and let K be a subfield

of K0 containing K0(ζpn) and e. Let R be the valuation ring of K. Consider the smooth

model X ′R of P1
K corresponding to the coordinate t, where x = d+ et. The formal disk D

corresponding to the completion of Dk = X ′k\{t =∞} in X ′R is the closed disk of radius

1 centered at t = 0, or equivalently, the disk of radius |e| centered at x = d (§2.4). Its

ring of formal functions is R{t}.

We know that f is given by an equation of the form yp
n

= g(x) := cxa(x−1)b, and that

any value of c yields f over K0. Taking K sufficiently large, we may assume c = (a+b)a+b

aa(−b)b .

In order to calculate the normalization of X ′R in K(Y ), we calculate the normalization E

of D in the fraction field of R{t}[y]/(yp
n − g(x)) = R{t}[y]/(yp

n − g(d+ et)). Now,

g(d+ et) = g(d) +
g′(d)

1!
(et) +

g′′(d)
2!

(et)2 + · · · .

A quick calculation shows that g(d) = 1, g′(d) = 0, and g′′(d) = (a+b)3

ab is a unit in R.

Thus v(g
′′(d)
2! e2) = n + 1

p−1 , and the coefficients of the higher powers of t have higher

86



valuations. Since p 6= 2, we are in the situation of Corollary 2.34, and the special fiber

E of E is a disjoint union of pn−1 étale covers of D := D ⊗R k ∼= A1
k. By Remark 2.33

(iii), each of these covers extends to an Artin-Schreier cover of conductor 2 over P1
k. By

Corollary 2.13, these have genus p−1
2 > 0, and thus the component Xb corresponding to

D is included in the stable model. By Proposition 2.22, it is a tail. Since there is only

one tail of X, and it has ramification invariant 2, it must correspond to Xb.

To (ii): We repeat the proof of (i), except in this case we choose e such that v(e) =

1
2(2n− s+ 1

p−1). Then, letting g(x) = xa(x− 1)b, we have that g(d) = 1, g′(d) = 0, and

g′′(d) = (a+b)3

ab has valuation s− n in R. Thus v(g
′′(d)
2! e2) = n+ 1

p−1 , and the coefficients

of the higher powers of t have higher valuations. We conclude as in (i). 2

Corollary 4.11. (i) If f is totally ramified above all three branch points, then X has

no inseparable tails.

(ii) If f is totally ramified above only 0 and ∞, then if X has an inseparable tail, it

contains the specialization of x = 1.

Proof. To (i): Suppose there is an inseparable tail Xc ⊂ X. Suppose Xc is a pj-

component (j < n, by Proposition 2.24). Let σc be its ramification invariant (page

60). Then, by Proposition 2.19, Xc does not contain the specialization of a branch point

of f . By Lemma 3.8, this means that σc > 1. Then let Q < G be the unique subgroup of

order pj . The stable model of the cover Y/Q→ X is a contraction of Y st/Q. But Xc is a

new tail of Y st/Q. Since σc > 1, the components of Y /Q above Xc have positive genus,

and thus cannot be contracted in the stable model of Y/Q→ X. So Xc is a new tail of the
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stable model of Y/Q → X. But it does not contain the specialization of d. This contra-

dicts Lemma 4.10 (substituting n−j for n in the statement), showing that Xc cannot exist.

To (ii): Assume f is ramified above x = 1 of index ps, s < n. Again let Xc be an

inseparable tail of X that is a pj-component, and σc its ramification invariant. Assume

that x = 1 does not specialize to Xc. If j ≥ s, then the generalized vanishing cycles

formula (3.1.7) with r = j yields 0 ≥ σc − 1. But σc ≥ 2 by Lemma 3.8, giving a contra-

diction. Now suppose j < s. Letting Q < G be the unique subgroup of order pj , we see

that Y/Q is a three-point cover. So we obtain the same contradiction as in (i). 2

Lemma 4.12. The stable reduction X cannot have a pi-component intersecting a pi+j-

component, for j ≥ 2.

Proof. Let Xc be such a pi-component, and let σc = σj,c be its ramification invariant.

Then since every term on the right-hand side of the generalized vanishing cycles formula

(3.1.7) for r = i is nonnegative, we have that 1 ≥ σc − 1. But by [Pri06, Lemma 19],

σc ≥ pj−1σ1,c. Since j ≥ 2 and p > 2, then σc > 2. This is a contradiction. 2

We now give the structure of the stable reduction when f has three totally ramified

points.

Proposition 4.13. Suppose that f is totally ramified above all three branch points. Then

X is a chain, with one pn−i-component Xi for each i, 0 ≤ i ≤ n (X0 is the original

component). For each i > 0, the component Xn−i corresponds to the closed disk of radius

|ei| centered at d = a
a+b , where v(ei) = 1

2(i+ 1
p−1).
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Proof. We know from Lemma 4.10 and Corollary 4.11 that X has only one tail, so it must

be a chain. The original component contains the specializations of the branch points, so

it must be a pn-component. By, Lemma 4.12, there must be a pn−i-component for each i,

0,≤ i ≤ n. Also, there cannot be two components W ≺W ′ with the same inertia, as the

components lying above W ′ would be purely inseparable over W ′, with only two marked

points. This violates the three-point condition.

It remains to show that the disks are as claimed. For i = n, this follows from Lemma

4.10. For i < n, consider the cover Y/Qi → X, where Qi is the unique subgroup of G

of order pn−i. The stable model of this cover is a contraction of Y st/Qi → Xst. By

Lemma 4.10 (using i in place of n), the stable reduction of Y/Qi → X has a new tail

corresponding to a closed disk centered at d with radius p−
1
2

(i+ 1
p−1

). Thus X also contains

such a component. This is true for every i, proving the proposition. 2

Things are more complicated when f has only two totally ramified points:

Proposition 4.14. Suppose that f is totally ramified above 0 and ∞, and ramified of in-

dex ps above 1, for 0 < s < n. Then X has stable reduction as in Figure 4.1. Furthermore,

if ρ ∈ K0 such that |ρ| is the radius of a closed disk corresponding to a component of X

other than the original component, then v(ρ) ∈ 1
2(p−1)Z.

Proof. We know by Lemma 4.10 that X has exactly one étale tail. By Corollary 4.11,

X can have at most one inseparable tail, which contains the specialization of x = 1. We

claim that this tail does, in fact, exist. Suppose it did not. Then X would be a chain. In

particular, there would be a component W in this chain to which x = 1 specializes. In
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Figure 4.1: The stable reduction with two full branch points
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particular, the deformation data above W are mulitplicative and identical. Let α (resp. β)

be the intersection of W with the immediately preceding (resp. following) component of

X. Let σα and σβ be the invariants of one of the deformation data at α and β respectively.

By Lemma 2.47, σβ = σeff
β = 2. Also, if γ is the point to which x = 1 specializes, then

σγ = 0. Then the local vanishing cycles formula (2.7.2) yields σα
p + A = −1, where

A is some positive number. Thus σα is negative, which contradicts the fact that the

deformation data is multiplicative. This proves the claim.

Recall that v(1 − d) = v( b
a+b) = v(b) = n − s. Since X has a tail containing the

specialization of 1 (call this X†) and one containing the specialization of d, there must

be a component of X “separating” 1 and d, i.e., corresponding to the disk centered at 1

(equivalently, d) of radius |1 − d|. Call this component X∗. Then X looks like a chain

from the original component X0 to X∗, followed by two chains, one going out to X† and

one going out to the new tail, which we will call Xn in this proof.

Let us first examine the part of X between X0 and X∗. Let Q < G be the unique

subgroup of order ps, and consider the cover f ′ : (Y st)′ := Y st/Q→ Xst. For any singular

point x of X on this chain lying on an intersection of components W ≺W ′, we will take

(σeff
x )′ to mean the effective invariant for the deformation data above W at x for the cover

f ′. Now, f ′ is a cover branched at two points. By (3.1.1), any tail Xb of the stable

reduction of this graph must have σb = 1. So we always have (σeff
x )′ = 1, by Lemma

2.47. Above X0, the effective different (δeff)′ for f ′ is n − s + 1
p−1 . So above X∗, it is

n − s + 1
p−1 − (n − s) = 1

p−1 > 0, by Lemma 2.46 applied to all of the singular points

between X0 and X∗. This means that X∗ is an inseparable component for f ′, which
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means that it is at least a ps+1-component for f . On the other hand, if we quotient out

further by a group of order p, a similar calculation will show that X∗ becomes an étale

component. So X∗ is a ps+1-component.

By Lemma 4.12, there must be a pi-component between X0 and X∗ for each i, s+1 ≤

i ≤ n. If we let Qi be the subgroup of G of order pi, then if we take f ′i : (Y st)′i :=

Y st/Qi → Xst, the effective different above X0 is n − i + 1
p−1 . Since all of the σeff’s are

still equal to 1, Lemma 2.46 shows that above a component corresponding to the closed

disk of radius p−(n−i+ 1
p−1

) centered at d, the effective different will be 0. This means

that this component is the innermost pi-component. For i > s + 1, we cannot have two

pi-components intersecting each other, because the three-point condition on f will be

violated on the outermost one (the components lying above would be purely inseparable

over it). For i = s+ 1, we have a pi-component corresponding to the closed disk of radius

n− s− 1 + 1
p−1 around d intersecting X∗, which corresponds to the closed disk of radius

n − s around d. We label each pi-component in this chain (excepting X∗), by Xn−i in

Figure 4.1. We have shown that their radii satisfy the condition in the proposition.

Now, let us examine the part of X between X∗ and X†. We have seen that X∗ is a

ps+1-component, and X† is a ps-component by Proposition 2.19. So this part of X consists

only of these two components. Recall that if we quotient out Y st by Q (which is Qs), the

effective different above X∗ is 1
p−1 . Also, recall that the effective invariant σeff at X∗∩X†

above X∗ is 1 after taking this quotient. So by Lemma 2.46, X† corresponds to the disk

of radius p−(n−s+ 1
p−1

) centered at 1. This satisfies the condition of the proposition.

Lastly, let us examine the part of X between X∗ and the new tail Xn. We know there
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must be a pi-component for each i, 0 ≤ i ≤ s+ 1. This component must be unique, as if

there are two pi-components that intersect, we will again violate the three-point condition

above the outermost one. These components are labeled Xn−i in Figure 4.1 (with the

exception of X∗). We calculate the radius of the closed disk corresponding to each Xn−i.

For i = s, the radius is p−(n−s+ 1
p−1

) for exactly the same reasons as for X†. For i = 0, we

already know from Lemma 4.10 that the radius is p−
1
2

(2n−s+ 1
p−1

). For 1 ≤ i ≤ s − 1, we

consider the cover Y/Qi → X, where Qi is the unique subgroup of G of order pn−i. The

stable model of this cover is a contraction of Y st/Qi → Xst. Since Y/Qi → X is still a

three-point cover, we can use Lemma 4.10 (with n − i in place of n) to obtain that the

stable reduction of Y/Q→ X has a new tail corresponding to a closed disk centered at d

with radius p−
1
2

(2n−s−i+ 1
p−1

). This is the component Xn−i. Again, these radii all satisfy

the condition of the proposition. 2

The stable reduction of f having been described, we now turn to the minimal field of

definition of the stable model.

Lemma 4.15. Suppose a component W of X corresponds to a disk of radius |e| containing

a K0-rational point x0. Then any element of GK0(e) acting on Xst fixes W pointwise.

Proof. Let x be a point ofW which is a smooth point ofX. Then x is not the specialization

of ∞ ∈ X. Choose some lift x ∈ K0. The set of points that specialize to x is an open

disc of radius |e|. Now, if x is the specialization of x0, then clearly it is fixed by GK0(e).

If not, then x−x0
e has valuation 0 in K0. Choose u ∈ K0 such that v(u− x−x0

e ) > 0. Then

v((eu+ x0)− x) > v(e), and thus eu+ x0 also specializes to x. But eu+ x0 ∈ K0(e), so

93



GK0(e) fixes x. By continuity it fixes all of the singular points of X on W . 2

We give the major result of this section:

Proposition 4.16. Assume G = Z/pn, n ≥ 1, p 6= 2, and f : Y → X is a three-point

G-cover defined over K0.

(i) If f is totally ramified above 0, 1, and ∞, then there is a model for f defined over

Kn = K0(ζpn) whose stable model is defined over Kn(
√
ζp − 1).

(ii) If f is totally ramified above 0 and ∞, and of index ps above 1, then there is a model

for f over Kn whose stable model is defined over Kn(
√
ζp − 1, pn−s

√
c), where c ∈ Q

and pn−s|vp(c).

Proof. To (i): Take f to be given by the equation yp
n

= cxa(x−1)b, with a, b, a+b prime

to p and c = (a+b)a+b

aa(−b)b . Set Kst = Kn(
√
ζp − 1). Note that v(Kst) = 1

2(p−1)Z.

By §2.5, we must show that GKst acts trivially on Y . First we show that GKst acts

trivially on X. By Proposition 4.13, every component of X corresponds to a closed disk

containing the K0-rational point d whose radius is the absolute value of an element whose

valuation is in 1
2(p−1)Z. We can choose such an element in Kst. So GKst acts trivially on

every component of X, and thus on X.

So the action of GKst on Y must be vertical. Consider the fiber of Y → X above

d = a
a+b . From the equation yp

n
= cxa(x − 1)b of our model, the points of this fiber are

all rational over Kst (they are pth roots of unity). Thus their specializations are fixed by

GKst . Since d specializes to Xn and GKst acts vertically, GKst fixes all of Y above Xn.

By inward induction and continuity, GKst fixes Y .
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To (ii): Take c and the equation for f as in part (i). Note that v(c) = −bv(b). Since

v(b) = n− s, it follows that pn−s|v(c). We set GKst = Kn(
√
ζp − 1, pn−s

√
c).

As in the proof of (i), this time using Proposition 4.14 instead of 4.13, we see that

GKst must act vertically on Y . Exactly as in (i), we see that GKst acts trivially above the

unique étale tail of X. Now, consider Y /(Qs), where Qs is the unique subgroup of order

ps in G. This is a cover of X given birationally by the equation yp
n−s

= cxa(x−1)b. Since

pn−r exactly divides b, we set y′ = y/(x − 1)b/p
(n−s)

. The new equation (y′)p
n−s

= cxa

shows that the points above x = 1 are defined over the field K0( pn−s
√
c). Thus they are

defined over Kst. Again, by inward induction and continuity, GKst fixes Y . 2

Corollary 4.17. In either case covered in Proposition 4.16, let Kst be the minimal field

of definition of the stable reduction, and let Γ = Gal(Kst/K0). Then Γn = {Id} (where

Γn means the nth higher ramification group for the upper numbering).

Proof. In case (i) of Proposition 4.16, Kst is a tame extension of K0(ζpn). The nth higher

ramification groups for the upper numbering for K0(ζpn)/K0 vanish by [Ser79, Corollary

to IV, Proposition 18]. Since the upper numbering is preserved by quotients, the nth

higher ramification groups vanish for Kst/K0 as well.

For case (ii) of Proposition 4.16, we show that K0(ζpn , p
n−s√

c)/K0 has trivial nth

higher ramification groups for the upper numbering, where pn−s|vp(c) and c ∈ Q. Writing

c′ = c/pvp(c) we have that v(c′) = 0 and K0(ζpn , p
n−s√

c) = K0(ζpn ,
pn−s√c′). Then the

result follows from [Viv04, Theorem 5.8]. 2
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4.2.2 The case of a general cover, m = 1

Proposition 4.18. Let G be a finite group with a cyclic p-Sylow subgroup P of order

pn. Assume NG(P ) = ZG(P ) and p 6= 2. If f : Y → X is a three-point G-cover of P1

defined over K0, then the field of moduli K of f relative to K0 is a tame extension of

Kn := K0(ζpn). Furthermore, there exists a model fK of f over K such that if Kst/K0

is the minimal extension over which the stable reduction of fK is defined, then the nth

higher ramification groups for the upper numbering of the extension Kst/K0 vanish.

Proof. By Corollary 2.4, we know there is a prime-to-p normal subgroup N ≤ G such that

G/N ∼= Z/pn. Let Y † = Y/N . If the quotient cover f † : Y † → X is branched at three

points, then Lemmas 2.30 and 2.31, combined with Proposition 4.9 and Corollary 4.17,

yield the proposition. If, however, f † is a cyclic Z/pn-cover branched at only two points,

say x = 0 and x = ∞, then we must mark the specializations of the points lying over

x = 1, and require these markings to be separated on the closed fiber. Call this model

(f †)′ : ((Y †)st)′ → (Xst)′ (cf. §2.6 before Lemma 2.30). We will show that it is defined

over Kn = K0(ζpn). Then Lemmas 2.30 and 2.31 will yield the proposition.

We may assume that f † : Y † → X is given by the equation yp
n

= x, which is defined

over Kn as a Z/pn-cover. Let Rn be the ring of integers of Kn, and take the smooth model

XRn of X corresponding to the coordinate x. The normalization of XRn in Kn(Y †) has

smooth, irreducible special fiber Y † that is purely inseparable of degree pn over the special

fiber X0 of XRn . All points above x = 1 specialize to the same point on Y
†. In order to

separate these points, we take n successive blowups to introduce a chain of intersecting

components X1, . . . , Xn, where Xi is a pn−i-component (we cannot have a pa-component
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intersect a pa−j-component with j > 1, by Lemma 4.12. This is the model Xst, and its

normalization in K(Y ), for K a large enough extension of Kn, is ((Y †)st)′. We must show

((Y †)st)′ is in fact defined over Kn.

Each component Xi, 1 ≤ i ≤ n corresponds to a disk centered at x = 1. Let xi =

Xi ∩Xi+1. To calculate the radius of the disk corresponding to Xi, we take the quotient

of ((Y †)st)′ by Z/pn−i. Let 0 ≤ j < i. By Lemma 2.47, σeff
xj for the deformation data

above Xj is 1. Also, the effective different above X0 for the quotient cover is i + 1
p−1 ,

whereas the effective different above Xi is zero. Then, applying Lemma 2.46 to each of

the xj , 0 ≤ j < i, shows that the radius of the disk corresponding to Xi is p−(i+ 1
p−1

). The

valuation of this is i+ 1
p−1 .

As in the proof of Lemma 4.15, each smooth point ofXi, 0 ≤ i ≤ n, is the specialization

of some point defined over Kn. Thus GKn acts trivially on X =
⋃n
i=0Xi. Since the points

above x = 1 in Y † are clearly defined over Kn, GKn acts trivially above Xn. By inward

induction, it acts trivially on ((Y †)st)′. So the cover (f †)′ is defined over Kn, and we are

done. 2

4.3 The case where m = 2

Since m|(p− 1), we may (and do) assume throughout this section that p 6= 2. We break

this section up into the cases where the number τ of branch points of f : Y → X = P1

with prime-to-p branching index is 1, 2, or 3. The cases τ = 2 and τ = 3 are quite easy,

whereas the case τ = 1 is much more involved. This stems from the appearance of new

tails in the stable reduction of f in the case τ = 1. The ideas in the proof of the τ = 1
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case should work as well in the τ = 0 case; although we have a partial proof, it is not yet

complete, so we do not include it here. Before examining the separate cases, we mention

the following easy lemma:

Lemma 4.19. If m = 2, and if f has bad reduction, then there are at most two étale

tails. Furthermore, for any étale tail Xb, σb ∈ 1
2Z (see §2.5).

Proof. That σb ∈ 1
2Z follows by Lemma 2.26. Then, in the vanishing cycles formula

(3.1.2), each term on the right-hand side is at least 1
2 , using Lemma 3.8. So there can be

at most two terms, corresponding to at most two étale tails. 2

The τ = 3 case follows from this lemma:

Proposition 4.20. Assume f : Y → X is a three-point G-cover defined over K0 where

G has a cyclic p-Sylow subgroup P with m = |NG(P )/ZG(P )| = 2. Suppose that all

three branch points of f have prime-to-p branching index. Then f has potentially good

reduction. Additionally, f has a model defined over K0, and thus the field of moduli of f

with respect to K0 is K0.

Proof. Suppose f has bad reduction. By the fact that the specializations of the ramifica-

tion points of f cannot coalesce on Y , we have that each of the three branch points must

specialize to an étale primitive tail (Proposition 2.19). But this contradicts Lemma 4.19.

Let f : Y → X be the reduction of f over k. f is tamely branched. Then by [Ful69,

Theorem 4.10], there exists a unique deformation of fR to a cover defined over R, where

R is the ring of integers of any finite extension K/K0. It follows that fR0 exists, and

fR0 ⊗R0 R
∼= fR. Thus fR0 ⊗R0 K0 is the model we seek. 2
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4.3.1 The Case τ = 2

From now on, we assume that f has bad reduction (if f has good reduction, we conclude

as in Proposition 4.20). Now we consider the case where two branch points have prime-

to-p branching index (without loss of generality, we can take these points to be 0 and∞).

Then each of these specializes to a primitive tail, and Lemma 4.19 shows that there are

no new tails. The ramification invariant for each of these tails is 1
2 by Lemma 4.19 and

the vanishing cycles formula (3.1.2). Then the strong auxiliary cover f str : Y str → X is

a three-point Z/pν o Z/2-cover, for some ν ≤ n. Since we know the branching of this

cover, we can determine the form of its equation — it must be given birationally by the

equations

z2 = x, yp
ν

=
(
z − 1
z + 1

)r
for some r ∈ Z. So as a mere cover, f str is defined over K0, and as a Gstr ∼= Z/pν oZ/2-

cover, it is defined over Kν . By Proposition 4.7, the stable model of fstr is defined over a

tame extension of Kν (see the proof of Proposition 4.4 (iii)). Lemmas 2.30 and 2.31 show

that the same is also true for the stable model of faux, the standard auxiliary cover. Using

Lemma 2.28, the same is true for the stable model of f . We have shown the following:

Proposition 4.21. Assume f : Y → X is a three-point G-cover defined over K0 where

G has a cyclic p-Sylow subgroup P with m = |NG(P )/ZG(P )| = 2. Suppose that two of

the three branch points of f have prime-to-p branching index. Then f can be defined over

some K which is a tame extension of Kn. Indeed, even the stable model of f can be

defined over such a K. Thus the field of moduli of f relative to K0 is contained in a tame
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extension of Kn.

4.3.2 The Case τ = 1

Now we consider the case where only one point, say 0, has prime-to-p branching index.

The goal of this (rather lengthy) section is to prove the following proposition:

Proposition 4.22. Assume f : Y → X is a three-point G-cover defined over K0 where

G has a cyclic p-Sylow subgroup P with m = |NG(P )/ZG(P )| = 2 and p 6= 3, 5. Suppose

that exactly one of the three branch points of f has prime-to-p branching index. Then f

can be defined over some K such that the nth higher ramification groups for the upper

numbering for K/K0 vanish. Indeed, even the stable model of f can be defined over such a

K. Thus the nth higher ramification group for the upper numbering for the field of moduli

of f relative to K0 vanishes.

The outline of the proof is this: We will take the auxiliary cover of f , show that its

modified stable model can be defined over a field K/K0 whose nth higher ramification

groups vanish for the upper numbering, and then conclude via Lemma 2.28 that the stable

model of f can be defined over K.

We mention that, because m = 2, the stable reduction of f is monotonic (Proposition

3.10).

We first deal with the case where there is a primitive tail containing the specialization

of 0, but no new tails. Then the vanishing cycles formula (3.1.2) shows that this tail has

σ = 1. Furthermore, if P aux is a p-Sylow subgroup of Gaux, we claim that NG(P aux) =

ZG(P aux). If this were not the case, then the strong auxiliary cover would have Galois
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group Gstr ∼= Z/pν o Z/2, for some ν ≤ n, but only one branch point with prime-to-p

branching index. Then quotienting out by Z/pν would yield a contradiction.

Since we are assuming that the stable reduction of f has no new tails, the auxiliary

cover faux : Y aux → X is branched at either two or three points. If it is branched at three

points, we are in the situation of Proposition 4.18, and we immediately conclude that the

stable model of faux (which is the modified stable model) is defined over some K such

that the nth higher ramification groups of the extension K/K0 vanish. If it is branched at

two points, it is a cyclic cover, and we conclude that the modified stable model of faux is

defined over Kn = K0(ζpn) as in the proof of Proposition 4.18. From [Ser79, IV, Corollary

to Proposition 18], the nth higher ramification groups of Kn/K0 vanish. By Lemma 2.28,

Proposition 4.22 is true in this case.

We now come to the main case, where there is a new tail Xb and a primitive tail Xb′ .

We will assume for the remainder of this section that p 6= 3, 5 (although it is likely that

the main results should hold in the case p = 3, 5, see Remark 1.5 (iii)). By the vanishing

cycles formula (3.1.2), the primitive tail has σ = 1/2 and the new tail has σ = 3/2. It is

then clear that the auxiliary cover has four branch points, at 0, 1,∞, and a (keep in mind

that we have some freedom in how we choose a). Also, the modified stable model of the

auxiliary cover is, in fact, the stable model. The strong auxiliary cover then has Galois

group Gstr ∼= Z/pν oZ/2 for some ν ≤ n. Without loss of generality, we can assume that

0 and a are branched of index 2, and 1 and ∞ are branched of p-power index. The cover

fstr can be given by the description (g0, g1, g∞, ga), where g0, g1, and g∞ generate Gstr
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and ga = (g0g1g∞)−1; see §2.2. Since g0, g1, and g∞ must generate Gstr, we see that at

least one of {1, ∞} must be branched of index pν . In particular, by Proposition 2.19,

there is a pν-component of X. Because fstr is monotonic, the original component X0 is

a pν-component.

After a possible application of the transformation x→ x
x−1 of P1, which interchanges

1 and ∞ while fixing 0, we can further assume that a does not collide with ∞ on the

smooth model of X corresponding to the coordinate x (i.e., |a| ≤ 1). We will start by

working over a field K/K0 over which the stable model of f str is defined. Let R be the

ring of integers of K, and let π be a uniformizer of R. As always, v is a discrete valuation

on K such that v(p) = 1.

To prove Proposition 4.22, we will show that the stable model of f is defined over a

field Kst such that the nth higher ramification groups of Kst/K0 vanish. This proof will

be somewhat involved, so we outline the steps here.

Step 0. We prove some preliminary lemmas.

Step 1. We show that the new branch point a can be chosen to be a K0-rational point.

This is the main part of the proof.

Step 2. We deduce that fstr can be defined as a mere cover over K0(
√

1− a) = K0, and

as a Gstr-cover over Kν .

Step 3. We then show that, if a 6≡ 0 (mod π), there are no new inseparable tails. If a ≡ 0

(mod π), there is exactly one new inseparable tail, and we describe its location.

Step 4. We determine an extension (Kstr)st of Kν over which the stable model (f str)st
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of fstr can be defined.

Step 5. We show that (faux)st is defined over a tame extension (Kaux)st of (Kstr)st.

Step 6. It follows that f st is defined over a tame extension Kst of (Kaux)st.

Step 7. We show that the νth higher ramification groups for the upper numbering for

Kst vanish. Since ν ≤ n, the nth higher ramification groups vanish as well.

Step 0. The following is a general structural lemma about fstr:

Lemma 4.23. Every étale tail Xb of X intersects a p-component.

Proof. By Proposition 2.24, Xb intersects an inseparable component. If Xb intersects a

pα-component, with α > 1, then Lemma 3.8 shows that σb ≥ p/2. Since pα−1/2 > 2,

and all terms on the right hand side of (3.1.2) are positive, this contradicts the vanishing

cycles formula (3.1.2). 2

Lemma 4.24. The point x = ∞ is branched of index pν and specializes to the original

component X0. If a 6≡ 1 (mod π), then f str is branched at x = 1 of index pν , and x = 1

also specializes to the original component.

Proof. Assume for a contradiction that∞ is not branched of index pν . Then 1 is branched

of index pν . Obviously, there are no pν+j-components for j > 0. Since fstr is monotonic,

1 then specializes to X0 by Corollary 3.9. Thus, the deformation data above X0 are

multiplicative and identical, by Proposition 2.41. By assumption and Proposition 2.19,

∞ does not specialize to the original component. Then consider the unique point x ∈ X0

such that the specialization ∞ of ∞ satisfies x ≺ ∞. Since |a| ≤ 1, there is no étale tail
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lying outward from x, and Lemma 2.47 shows that σeff
x = 0 for the differential data above

X0. But this means that σx = 0 for each deformation datum above X0. This contradicts

Proposition 2.40. We have thus shown that ∞ is branched of index pν . By Corollary 3.9,

∞ specializes to X0.

Now suppose a 6≡ 1 (mod π). Assume for a contradiction that 1 does not specialize

to the original component. Consider the unique point x ∈ X0 such that x ≺ 1, the

specialization of 1. As in the previous paragraph, σx = 0 for each deformation datum

above X0, and we get a contradiction. 2

Lemma 4.25. Let c = α + β√
1−a , α, β, a ∈ K. Then if v(c) > 0 and v(α) = 0, there

exists an element a0 ∈ K0(α, β) such that v(a− a0) = v(c) + 2v(β).

Proof. Choose a0 = 1−
(
β
α

)2
. Solving for a, we find that a = 1−

(
β
c−α

)2
. Then

a− a0 = β2

(
2cα− c2

α2(α− c)2

)
.

Clearly, v(a− a0) = 2v(β) + v(c). 2

Step 1. We must show that the unique new tail Xb of X contains the specialization of a

K0-rational point. From the construction of the auxiliary cover (§2.6), we know that we

can then choose this point as our a. We will show the existence of the K0-rational point

specializing to Xb by calculating the radius of the closed disk corresponding to Xb, and

then showing that only values of a that are within this radius of a K0-rational point a0

can arise as the added branch point of the auxiliary cover of a three-point cover. Then,

in the construction of the auxiliary cover, we can replace a with a0.
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Let us write down the equations of the cover fstr : Y str → Xstr. Let Zstr =

Y str/(Z/pν), and write Z for Y /(Z/pν). Then Zstr → Xstr is a degree 2 cover of P1’s,

branched at 0 and a. Therefore, Zstr can be given (birationally) over K0 by the equation

z2 =
x− a
x

. (4.3.1)

Let Zb be the unique irreducible component of Z above Xb. Since z = ±1 (resp. ±
√

1− a)

corresponds to x = ∞ (resp. x = 1), then Y str → Zstr can be given (birationally) over

K0 by the equation

yp
ν

= g(z) := (z + 1)r(z − 1)p
ν−r(z +

√
1− a)s(z −

√
1− a)p

ν−s (4.3.2)

for some integers r and s, which are well-defined modulo pν . The branching index of fstr

at ∞ is pν−v(r), and at 1 it is pν−v(s).

Lemma 4.26. Let ρ (resp. e) be an element of K such that |ρ| (resp. |e|) is the radius

of the disk centered at x = a corresponding to Xb (resp. the disk centered at z = 0

corresponding to Zb).

(i) If a 6≡ 0, 1 (mod π), then v(ρ) = 2
3(ν + 1

p−1) and v(e) = 1
3(ν + 1

p−1).

(ii) If a ≡ 0 (mod π), then v(ρ) = 2
3(ν + 1

p−1) + v(a)
3 and v(e) = 1

3(ν + 1
p−1 − v(a)).

(iii) If a ≡ 1 (mod π), then v(ρ) = 2
3(ν+ 1

p−1 +v(1−a)) and v(e) = 1
3(ν+ 1

p−1 +v(1−a)).

Proof. Consider the chain of components X0 =: W 0 ≺ W 1 ≺ · · · ≺ W j ≺ W j+1 := Xb

such that each W i intersects W i+1 at one point. Let xi = W i ∩W i+1. Write σeff
i for the

effective invariant at xi for the deformation data above W i, and write εi for the épaisseur

105



of the annulus corresponding to xi.

To (i): Suppose a 6≡ 0, 1 (mod π). Then Xb is the only étale tail lying outward from

x0. No branch points with branching index divisible by p lie outward from x0, either. By

Lemma 2.47, σeff
i = 3

2 for all 0 ≤ i ≤ j. Also, the effective different above X0 is ν + 1
p−1 ,

whereas above Xb it is zero. By applying Lemma 2.46 to each xi, 0 ≤ i ≤ j, we obtain

v(ρ) = 2
3(ν + 1

p−1). Since z2 = x−a
x , and x is a unit in R for all x specializing to Xb, we

have v(e) = 1
2v(ρ) = 1

3(ν + 1
p−1).

To (ii): Suppose a ≡ 0 (mod π). In order to separate the specializations of a and 0

on the special fiber, there must be a component W of X corresponding to the closed disk

of radius p−v(a) and center 0 (or equivalently, center a). Suppose W = W i0 . Then, for

i < i0, Lemma 2.47 shows that σeff
i = 1. For i > i0, Lemma 2.47 shows that σeff

i = 3
2 .

By construction, we have
∑i0−1

i=0 εi = v(a). Applying Lemma 2.46 to each of the points

x0, . . . , xi0−1, we see that the effective different δeff above W is ν+ 1
p−1−v(a). Then, apply-

ing Lemma 2.46 to each of the points xi0 , . . . , xj , we see that
∑j

i=i0
εi = 2

3(ν+ 1
p−1−v(a)).

So v(ρ) =
∑j

i=0 εi = 2
3(ν + 1

p−1) + v(a)
3 .

Since z2 = x−a
x , then for any z, v(z) = 1

2(v(x − a) − v(x)). We have shown that Xb

corresponds to the disk v(x− a) ≥ 2
3

(
ν + 1

p−1

)
+ v(a)

3 . Since Xb is a new tail, 0 does not

specialize to this disk. So for any x in this disk, v(x − a) > v(a), so v(x) = v(a). This

shows that v(z) = 1
2(v(x− a)− v(a)). We conclude that the disk corresponding to Zb is

the disk centered at 0 with radius |e| such that v(e) = 1
3(ν + 1

p−1 − v(a)).
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To (iii): Suppose a ≡ 1 (mod π). In order to separate the specializations of a and 1

on the special fiber, there must be a component W of X corresponding to the closed

disk of radius p−v(1−a) and center 1 (or equivalently, center a). Suppose W = W i0 .

Then, for i < i0, Lemma 2.47 shows that σeff
i = 1

2 . For i > i0, Lemma 2.47 shows

that σeff
i = 3

2 . By construction, we have
∑i0−1

i=0 εi = v(1 − a). Applying Lemma 2.46

to each of the points x0, . . . , xi0−1, we see that the effective different δeff above W is

ν + 1
p−1 − 1

2v(1− a). Then, applying Lemma 2.46 to each of the points xi0 , . . . , xj , we see

that
∑j

i=i0
εi = 2

3(ν + 1
p−1 − 1

2v(1− a)). So v(ρ) =
∑j

i=0 εi = 2
3(ν + 1

p−1 + v(1− a)). As

in the case where a 6≡ 0, 1 (mod π), v(e) = 1
2v(ρ), so v(e) = 1

3(ν + 1
p−1 + v(1− a)). 2

Recall that

g(z) = (z + 1)r(z − 1)p
ν−r(z +

√
1− a)s(z −

√
1− a)p

ν−s.

Let t be a coordinate on Zb, and let e ∈ K be such that |e| is the radius of the disk D

corresponding to Zb. Since x = a corresponds to z = 0, we have z = et. If Ŷ , Ẑ are

the formal completions of (Y str)st and (Zstr)st along their special fibers, then the torsor

Ŷ ×Ẑ D → D is given generically by the equation

yp
ν

= g(0) +
g′(0)

1!
(et) +

g′′(0)
2!

(et)2 + · · · .

Possibly after a finite extension of K (so that g(0) becomes a pνth power), we can write

yp
ν

= 1 +
g′(0)
1!g(0)

(et) +
g′′(0)
2!g(0)

(et)2 + · · · .

Now, since σb = 3
2 , we know that this torsor must split into pν−1 connected components,

each of which has étale reduction and conductor 3. Let ci = g(i)(0)
i!g(0) e

i.
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We will have to deal separately with the cases a 6≡ 0, 1 (mod π), a ≡ 1 (mod π), and

a ≡ 0 (mod π).

The case a 6≡ 0, 1 (mod π):

In this case, v(e) = 1
3(ν + 1

p−1) by Lemma 4.26. Note that g(0) = ±(1 − a)p
ν/2 has

valuation 0. Since g(i)(0)/i! is the coefficient of zi in g, it has non-negative valuation, and

thus v(ci) ≥ i
3(ν+ 1

p−1). It follows that for p|i (and i 6= 0), v(ci) > ν+ 1
p−1 . So for our torsor

to have the correct kind of reduction, Lemma 2.14 shows that we must have v(c3) = ν+ 1
p−1

and v(c1), v(c2) ≥ ν+ 1
p−1 . In particular, we must have v(g

′(0)
g(0) ) ≥ 2

3(ν+ 1
p−1). A calculation

shows that

g′(0)
g(0)

= 2r − pν +
2s− pν√

1− a .

We now apply Lemma 4.25 with c = g′(0)
g(0) , α = 2r − pν , and β = 2s − pν . So

K0(α, β) = K0. Since the branching index of 1 is pν , s is a unit modulo p and v(β) = 0.

Since v(c) ≥ 2
3(ν + 1

p−1), there exists a0 ∈ K0 such that v(a− a0) ≥ 2
3(ν + 1

p−1). But by

Lemma 4.26, v(ρ) = 2
3(ν + 1

p−1), where |ρ| is the radius of the disk corresponding to Xb.

So we have found a K0-rational point a0 specializing to Xb. Note that the assumption

p 6= 5 was not necessary in this case.

The case a ≡ 0 (mod π):

In this case, v(e) = 1
3(ν+ 1

p−1 −v(a)) by Lemma 4.26. As in the proof of Lemma 4.26,

write W for the irreducible component of X which corresponds to the disk of radius |a|

around 0.
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Claim 4.27. We have v(a) = v(r + s) ≤ ν − 1. In particular, v(a) ∈ Z.

Proof. The cover Y str → Z
str splits completely above the specialization z of z = 0. Let

t be a coordinate corresponding to Zb, so that z = et. Then z corresponds to an open

disk |t| < 1, and [Ray94, Proposition 3.2.3 (2)] shows that this disk splits into pν disjoint

copies in Y
str. Recall that Y str → Zstr is given by the equation

yp
ν

= g(z) = (z + 1)r(z − 1)p
ν−r(z +

√
1− a)s(z −

√
1− a)p

ν−s.

This means that g(et) is a pνth power in R[[t]]. If
∑
αit

i is a power series in R[[t]] that is

a pνth power, the coefficient of t must be divisible by pν . So the coefficient of t in g(et),

which is g′(0)e, has valuation at least ν, and thus v(g
′(0)
g(0) ) ≥ ν−v(e) = 2

3ν+ 1
3v(a)− 1

3(p−1) .

On the other hand, g′(0)
g(0) = 2r − pν + 2s−pν√

1−a , which can be written as

2r + pν + (2s+ pν)(1 +
a

2
+O(a2)) = 2(r + s) + sa+ s(O(a2)) + pν(2 +O(a2)),

where O(a2) represents terms whose valuation is at least 2v(a). If we assume for the

moment that v(a) < ν− 1
2(p−1) , then we must have v(g

′(0)
g(0) ) ≥ 2

3ν+ 1
3v(a)− 1

3(p−1) > v(a).

Since v(a2) and v(pν) are both greater than v(a), this means v(2(r + s) + sa) > v(a),

so v(r + s) = v(sa) = v(a). Since v(r + s) ∈ Z, v(r + s) = v(a) ≤ ν − 1. If instead,

we assume that v(a) ≥ ν − 1
2(p−1) , then v(g

′(0)
g(0) ) ≥ 2

3ν + 1
3v(a) − 1

3(p−1) > ν − 1. So

v(2(r + s)) = v(r + s) > ν − 1.

So it remains to show that we cannot have both v(a) ≥ ν − 1
2(p−1) and v(r + s) ≥ ν.

Suppose this is the case. Then, by multiplying g(z) by (z+1)r+s(z−√1−a)r+s−p
ν

(z−1)pν
, which is a

pνth power, we obtain the equation

yp
ν

=
(
z +
√

1− a
z + 1

)s(
z −
√

1− a
z − 1

)r
.
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Consider the unique component V of Zstr above W . This component corresponds to the

coordinate z. The formal completion of V \{z = ±1} is Spec C where

C := Spec R{(z − 1)−1, (z + 1)−1}.

We have z+
√

1−a
z+1 −1 = 1+(

√
1− a−1)(z+1)−1. Since v(

√
1− a−1) = v(a) > ν−1+ 1

p−1 ,

this is a pν−1st power in C (Remark 2.35). Likewise,
(
z−√1−a
z−1

)
is a pν−1st power in C.

So
(
z+
√

1−a
z+1

)s (
z−√1−a
z−1

)r
is a pν−1st power in C. But this means that there are at least

pν−1 irreducible components in the inverse image of V \{z = ±1} in Y
str, and thus that

many irreducible components of Y str above V .

Now, W is not a tail, so it is not an étale component by Proposition 2.22. Also, if W is

a p-component, it must intersect a p2-component by Proposition 3.11 and monotonicity.

But then the inertia group above this intersection point is of order divisible by p2, so

there cannot be pν−1 irreducible components above V . If W is a pj-component for j ≥ 2,

then again there cannot be pν−1 irreducible components above V . This is a contradiction,

proving the claim. 2

Lemma 4.28. The valuation v
(
g(i)(0)
i!g(0)

)
≥ v(a)− v(i).

Proof. Since g(0) = ±(
√

1− a)p
ν
, it has valuation 0. Now, g(i)(0)

i! is the coefficient of

zi in g(z). Since v(a) ≥ v(a) − v(i), it suffices to look modulo pv(a). Then g(z) is

congruent to (z + 1)r+s(z − 1)2pν−r−s. The coefficient of zi is a sum of terms of the form

±
(
r+s
j

)(
2pν−r−s
i−j

)
. It is true in general that v(

(
α
β

)
) ≥ v(α)−v(β). This, combined with the

fact that v(i) ≥ min(v(j), v(i− j)) shows that the coefficient in question has valuation at

least v(r + s)− v(i), which is equal to v(a)− v(i), by Claim 4.27. 2
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Recall that ci := g(i)(0)
i! ei. Recall also that we are assuming p > 5.

Corollary 4.29. For i > 3, v(ci) > ν + 1
p−1 .

Proof. By Lemma 4.28, v(ci) ≥ iv(e) + v(a) − v(i). By Lemma 4.26 (ii), v(e) = 1
3(ν +

1
p−1 − v(a)). So

v(ci) ≥
i

3
(ν +

1
p− 1

− v(a)) + v(a)− v(i) = ν +
1

p− 1
+
i− 3

3
(ν +

1
p− 1

− v(a))− v(i).

Therefore, v(ci) > ν + 1
p−1 whenever (i−3)

3 (ν + 1
p−1 − v(a)) ≥ v(i). By Claim 4.27,

ν − v(a) ≥ 1. Then for i > 3 (and p > 5), one can see that (i−3)
3 (ν + 1

p−1 − v(a)) ≥ v(i)

always holds. This proves the corollary. 2

Now, we will show that the tail Xb contains the specialization of a K0-rational point.

We let t be a coordinate on Zb, and let Zb correspond to a disk D. Let Ŷ and Ẑ be

the formal completions of (Y str)st and (Zstr)st along their special fibers. As in the case

a 6≡ 0, 1 (mod π), we have that, after a finite extension of K, the torsor Ŷ ×Ẑ D → D

can be given generically by the equation

yp
ν

= 1 +
g′(0)
1!g(0)

(et) +
g′′(0)
2!g(0)

(et)2 + · · · .

Since σb = 3
2 , we know that this torsor must split into pν−1 connected components,

each of which has étale reduction and conductor 3. Let ci = g(i)(0)
i!g(0) e

i. By Corollary 4.34,

v(ci) > ν+ 1
p−1 for all i such that p|i. So for our torsor to have the correct kind of reduction,

Lemma 2.14 shows that we must have v(c3) = ν + 1
p−1 and v(c1), v(c2) ≥ ν + 1

p−1 . In

particular, we must have

v(
g′(0)
g(0)

) = v(2r − pν +
2s− pν√

1− a ) ≥ ν +
1

p− 1
− v(e) =

2
3

(ν +
1

p− 1
) +

1
3
v(a).
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Applying Lemma 4.25 with c = g′(0)
g(0) and β = 2s − pν , there exists a0 ∈ K0 such that

v(a−a0) ≥ 2
3(ν+ 1

p−1)+ 1
3v(a). By Lemma 4.26, this is exactly the valuation of the radius

of the disk corresponding to Xb. So there exists a K0-rational point specializing to Xb.

Remark 4.30. We can, in fact, take this K0-rational point to be a = 1 − s2

r2 . Then the

branch of the square root that we choose satisfies
√

1− a = − s
r .

The case a ≡ 1 (mod π). We claim that 1 is branched of index strictly less than pν .

Indeed, if 1 were branched of index pν , then it would specialize to the original component

by Corollary 3.9. But 1 must specialize to a smooth point. Since a ≡ 1 (mod π), then

a would specialize to this same point. But this contradicts the definition of the stable

model. Let pν1 be the branching index of 1. Then we know v(s) = v1 := ν − ν1. Recall

that ∞ specializes to X0. Also, recall from Lemma 4.26 that Zb corresponds to a closed

disk of radius |e|, where v(e) = 1
3(ν + 1

p−1 + v(1− a)).

Write v0 = v(1 − a). Then, since the specializations of 1 and a cannot collide on X,

we must have a component W of X corresponding to the disk of radius p−v0 centered at

1 (or equivalently, at a).

Claim 4.31. We have v0 ≤ 2(ν − 1 + 1
p−1).

Proof. Let Qν1 ≤ Gstr be the unique subgroup of order pν1 . Consider the cover f ′ :

(Y str)st/Qν1 → X. The effective different above the original component X0 for this cover

is ν − ν1 + 1
p−1 . For any singular point x ∈ X such that X0 ≺ x ≺ W , let (σeff

x )′ be the

effective invariant at x for the deformation data above the innermost component passing
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through x for the cover f ′. Since no branch point of f ′ with index divisible by p, and only

one branch point with index 2, specializes outward from any such x, Lemma 2.47 shows

that (σeff
x )′ − 1 is a sum of elements of the form σ − 1, where σ > 0, σ ∈ 1

2Z, and σ ∈ Z

for all but one term in the sum. Therefore, (σeff
x )′ − 1 ≥ −1

2 , so (σeff
x )′ ≥ 1

2 .

By Corollary 3.9 and monotonicity, x = 1 specializes to a component which intersects

a component which is inseparable for f ′. In particular, since x = 1 specializes on or

outward from W , it must be the case that any component of X lying inward from W is

inseparable for the cover f ′. Then, we can apply Lemma 2.46 to each X0 ≺ x ≺ W to

show that if δ is the effective different above W for f ′, then ν− ν1 + 1
p−1 − δ ≥ 1

2v0. Since

δ > 0 and ν1 ≥ 1, this yields v0 ≤ 2(ν − 1 + 1
p−1). 2

Claim 4.32. We have v0 = 2v1.

Proof. As in the case a ≡ 0 (mod π), we must have that v(g
′(0)
g(0) e) ≥ ν, so v(g

′(0)
g(0) ) ≥

2
3ν− 1

3( 1
p−1 +v0). Since v0 < 2(ν−1+ 1

p−1) (Claim 4.31), we see that v(g
′(0)
g(0) ) > 2

3− 1
p−1 > 0.

Recall that

g′(0)
g(0)

= 2r − pν +
2s− pν√

1− a .

Since v(2r−pν) = 0, it follows that v(2s−pν√
1−a ) = 0. Therefore v(

√
1− a) = v(2s−pν) = v1.

So v0 = v(1− a) = 2v1. 2

From now on we will write all quantities in terms of v1, not v0. So v(e) = 1
3(ν+ 1

p−1)+

2
3v1. Recall that g(z) = (z + 1)r(z − 1)p

ν−r(z +
√

1− a)s(z −
√

1− a)p
ν−s.

Lemma 4.33. • If i ≤ pν , then v
(
g(i)(0)
i!g(0)

)
≥ (1− i)v1 − v(i).

• If i > pν , then v
(
g(i)(0)
i!g(0)

)
≥ −pνv1.
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Proof. Since g(0) = ±(
√

1− a)p
ν
, we see that v(g(0)) = −pνv1. Now, g(i)(0)

i! is the

coefficient of zi in g(z), which clearly always has nonnegative valuation. So we have the

lemma in the case i > pν . For i ≤ pν , let us examine the coefficient of zi in g(z). The

lemma will follow if we show that this coefficient has valuation at least (pν−i+1)v1−v(i).

If we expand g without combining terms, each coefficient of a zi-term has at least pν − i

factors of
√

1− a, and thus valuation at least v1(pν − i). Any term that has pν − i + 1

factors of
√

1− a has high enough valuation, so we need only be concerned with those

terms that have exactly pν − i factors of
√

1− a. Such a term has coefficient

±(
√

1− a)p
ν−i
(
s

j

)(
pν − s
i− j

)
for some j ≤ i. But it is true in general that v(

(
α
β

)
) ≥ v(α) − v(β). This, combined

with the fact that v(i) ≥ min(v(j), v(i − j)), shows that the coefficient in question has

valuation at least (pν − i)v1 + v1 − v(i). Thus we are done. 2

As always, recall that ci := g(i)(0)
i! ei, and that we assume p > 5.

Corollary 4.34. For i > 3, v(g
(i)(0)
i!g(0) e

i) > ν + 1
p−1 .

Proof. For simplicity, write ci for g(i)(0)
i!g(0) e

i. If i ≤ pn, then Lemma 4.33 shows that v(ci) ≥

(1− i)v1 − v(i) + iv(e) = v1 − v(i) + i(v(e)− v1). Since v(e) = 1
3(ν + 1

p−1) + 2
3v1, we have

that v(ci) ≥ v1 − v(i) + i
3(ν + 1

p−1 − v1), or rearranging, that

v(ci) ≥ ν +
1

p− 1
+
i− 3

3
(ν +

1
p− 1

− v1)− v(i). (4.3.3)

Therefore, v(ci) > ν + 1
p−1 whenever (i−3)(ν−v1)

3 ≥ v(i). Recall that ν − v1 is a positive

integer. For i > 3 (and p > 3), one can see that (i−3)(ν−v1)
3 ≥ v(i) holds. So we have

shown the corollary for i ≤ pν .
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If i > pν , then again by Corollary 4.34, v(ci) ≥ −pνv1 + iv(e). Since i ≥ pν + 1, we

can write

v(ci) ≥ pν(v(e)− v1) + v(e) =
pν

3
(ν +

1
p− 1

− v1) +
1
3

(ν +
1

p− 1
+ 2v1). (4.3.4)

The right-hand side can be rewritten as ν + 1
p−1 + pν−2

3 (ν + 1
p−1 − v1). This is greater

than ν + 1
p−1 , because ν > v1. This proves the corollary for i > pν . 2

Now, we will show that the tail Xb contains the specialization of a K0-rational point.

We let t be a coordinate on Zb, and let Zb correspond to a disk D. Let Ŷ and Ẑ be

the formal completions of (Y str)st and (Zstr)st along their special fibers. As in the case

a 6≡ 0, 1 (mod π), we have that, after a finite extension of K, the torsor Ŷ ×Ẑ D → D

can be given generically by the equation

yp
ν

= 1 +
g′(0)
1!g(0)

(et) +
g′′(0)
2!g(0)

(et)2 + · · · .

Since σb = 3
2 , we know that this torsor must split into pν−1 connected components,

each of which has étale reduction and conductor 3. Let ci = g(i)(0)
i!g(0) e

i. By Corollary

4.34, v(ci) > ν + 1
p−1 for all i such that p|i. Then Lemma 2.14 shows that, in order

for our torsor to have the correct kind of reduction, we must have v(c3) = ν + 1
p−1 and

v(c1), v(c2) ≥ ν + 1
p−1 . In particular, we must have

v(
g′(0)
g(0)

) = v(2r − pν +
2s− pν√

1− a ) ≥ ν +
1

p− 1
− v(e) =

2
3

(ν +
1

p− 1
− v1).

Applying Lemma 4.25 with c = g′(0)
g(0) and β = 2s − pν , there exists a0 ∈ K0 such that

v(a− a0) ≥ 2
3(ν + 1

p−1) + 4
3v1. By Lemma 4.26, this is exactly the valuation of the radius

of the disk corresponding to Xb. So there exists a K0-rational point specializing to Xb.
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Step 2. Choose a ∈ K0, using Step 1. We have explicit equations (4.3.1) and (4.3.2)

for the cover fstr, which show immediately that fstr is defined as a mere cover over

K0(
√

1− a).

Let α be a generator of Z/pν ≤ Gstr, and let β be an element of order 2 in Gstr.

Since α∗ fixes z, Equation (4.3.2) shows that α∗(y) = ζipνy for some i ∈ Z. Also, Equa-

tion (4.3.1) shows that β∗(z) = −z. Writing g(z) for the right-hand side of (4.3.2), we

see that β∗(g(z)) = g(z)−1
(
(z + 1)(z − 1)(z +

√
1− a)(z −

√
1− a)

)pν . Thus β∗(y) =

ζipνy
−1(z + 1)(z − 1)(z +

√
1− a)(z −

√
1− a). This shows that the action of Gstr is

defined over K0(
√

1− a, ζpν ). Since a ∈ K0,
√

1− a is a degree 2 extension of K0. Since

Kν = K0(ζpν ) contains the unique tame extension of K0 of degree p − 1, and 2|(p − 1),

we have that K0(
√

1− a, ζpν ) = Kν . So fstr is defined over Kν as a Gstr-cover.

Step 3. We aim to show that X has no new inseparable tails, except in the case a ≡ 0

(mod π), where it has one.

Set j equal to the least integer such that there exists an inseparable tail Xc which is

a pj-component. In the language of page 60, the invariant σc of Xc satisfies σc ≥ 2, by

Lemmas 3.6 and 3.8. Write (Y str)′ = Y str/Qj , where Qj < Gstr is the unique subgroup

of order pj , and write (fstr)′ : (Y str)′ → X
′ for the stable reduction of (fstr)′. The stable

model of (fstr)′ : (Y str)′ → X is obtained from (Y str)st/Qj → Xst by contracting all

components of the special fiber lying outwards from the pj-components which intersect

pj+1-components.

For the duration of Step 3, we use the following convention: If x is a singular point
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of X ′, lying on the intersection of two irreducible components W ′ ≺ W
′′, then σeff

x is the

effective invariant above x for the deformation data above W ′ for the cover (fstr)′. Also,

εx is the épaisseur of the annulus corresponding to x. For any component X` of X ′, we

will use the notation σ` from page 60. By Lemma 4.23, this is always equal to σ1,`. If

a ≡ 0 (mod π) (resp. a ≡ 1 (mod π)), recall from Step 1 that we have a component W

of X separating a and 0 (resp. a and 1).

Lemma 4.35. (i) Xc is the only inseparable tail that is a pj-component. Its invariant

σc is equal to 2.

(ii) There are two pj-components Xβ and Xβ′ of X, other than Xc, which intersect

pj+1-components. We have σβ = σβ′ = 1
2 . Also, up to switching indices β and β′,

we have X0 ≺ Xβ ≺ Xb and X0 ≺ Xβ′ ≺ Xb′.

(iii) If a ≡ 1 (mod π), then j ≤ ν − v1− 1, where v1 = v(
√

1− a) as in Step 1. If a ≡ 0

(mod π), then j ≤ ν − v(a).

Proof. To (i) and (ii): Suppose the inseparable tails that are pj-components are indexed

by the set C. The vanishing cycles formula (3.1.7) with r = j, combined with Lemma

4.23, shows that

−2 + |Πr−j+1| =
∑
c′∈C

(σc′ − 1) +
∑

`∈Bj,j+1\C
σ`.

By the minimality of j, any component in Bj,j+1 that is not in C ′ must lie between X0

and either Xb or Xb′ . Thus there are at most two such components X`, and each must

satisfy σ` ≥ 1
2 . Then the only way that (3.1.7) can be satisfied is if |Πj+1| = 2, |C| = {c},

σc = 2, |Bj,j+1\C| = 2, and σ` = 1
2 for each ` ∈ Bj,j+1.
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To (iii): From Step 1, we know that fstr is ramified above 1 of index pν−v1 in the

case a ≡ 1 (mod π). From the proof of (ii), |Πj+1| = 2, which means that 1 is branched

of order at least pj+1. It follows that j ≤ ν − v1 − 1.

If a ≡ 0 (mod π), recall that W is the component of X separating 0 and a. Then

W ≺ Xβ, as otherwise we would have Xβ = Xβ′ . Consider the cover (f str)′. We claim

that the order of generic inertia above W is at most pν−v(a)+1. If this is true, then Xβ,

having less inertia than W , must be a pj-component for j ≤ ν − v(a).

To prove the claim, it suffices to show that g(z) is a pv(a)−1st power in

A := R{(z − 1)−1, (z + 1)−1}

(cf. the proof of Claim 4.27). We may multiply g(z) by (z+1)r+s(z−√1−a)r+s−p
ν

(z−1)pν
, which is

a pv(r+s)th power, thus a pv(a)th power, by Claim 4.27. We obtain the equation

yp
ν

=
(
z +
√

1− a
z + 1

)s(
z −
√

1− a
z − 1

)r
.

As in the proof of Claim 4.27, we see that z+
√

1−a
z+1 − 1 = 1 + (

√
1− a− 1)(z+ 1)−1. Since

v(
√

1− a − 1) = v(a) > v(a) − 1 + 1
p−1 , this is a pv(a)−1st power in A (Remark 2.35).

Likewise,
(
z−√1−a
z−1

)
is a pv(a)−1st power in A. So g(z) is a pv(a)−1st power in A, and we

are done. 2

By Lemma 4.35, the stable reduction X
′ has étale tails Xβ, X

′
β, and Xc with σβ =

σβ′ = 1
2 and σc = 2. The effective different δeff above X0 for (fstr)′ is ν − j + 1

p−1 .

Lemma 4.36. Let Zβ be the unique component of Zstr above Xβ. Let e′ be such that the

radius of the disk corresponding to Zβ is |e′|.
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(i) There exists q ∈ Q such that every point x ∈ X specializing to Xc satisfies v(x−a) =

q.

(ii)

• If a 6≡ 0, 1 (mod π), then v(e′) = ν − j + 1
p−1 − q and q < v(ρ′) = 2v(e′). Thus

v(e′) > 1
3(ν − j + 1

p−1).

• If a ≡ 0 (mod π), then v(e′) = ν − j + 1
p−1 − q and q < v(ρ′) = 2v(e′) + v(a).

Thus v(e′) > 1
3(ν − j + 1

p−1 − v(a)).

• If a ≡ 1 (mod π), then v(e′) = ν − j + 1
p−1 − q + v(a) and q < 2v(e′). Thus

v(e′) > 1
3(ν − j + 1

p−1 + v(a)).

Proof. To (i): We know that x = 0 does not specialize to Xc. So if x1 and x2 specialize

to Xc, then v(x1 − x2) is greater than both v(x1 − a) and v(x2 − a). We conclude that

v(x1 − a) = v(x2 − a). Clearly q < v(e′), as if v(x− a) ≥ e′, then x specializes to Xβ.

To (ii): The proof of each case uses the same method, so we prove the case a ≡ 0 (mod π)

and leave the others as exercises. Suppose that q > v(a). Then v(ρ′) = q + v(ρ′) − q.

Let w ∈ X be the maximal point such that w ≺ Xc and w ≺ Xβ. Consider the singular

points x of X such that X0 ≺ x ≺ Xβ. By Lemma 2.47 we have the following facts:

If w ≺ x, then σeff
x = 1

2 . If W ≺ x � w, then σeff
x = 3

2 . If x ≺ W , then σeff
x = 1.

Using Lemma 2.46, one shows that v(ρ′) − q = 2(ν − j + 1
p−1 + 1

2v(a) − 3
2q). Thus

v(ρ′) = 2(ν − j + 1
p−1 + 1

2v(a)− q). Since v(ρ′) = 2v(e′) + v(a) (cf. proof of Lemma 4.26

(ii)), we have v(e′) = ν − j + 1
p−1 − q. If instead, q < v(a), we do a similar computation,
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this time writing v(ρ′) = v(a) + v(ρ′)− v(a). 2

Proposition 4.37. There are no new inseparable tails unless a ≡ 0 (mod π). In this

case, any inseparable tail must be a pν−v(a)-component.

Proof. If t is a coordinate corresponding to Zβ, we can write the equation of (Y str)′ → Zstr

in terms of the coordinate t as

yp
ν−j

= g(e′t)/g(0) = 1 +
g′(0)
1!g(0)

(e′t) +
g′′(0)
2!g(0)

(e′t)2 + · · · .

We first claim that if a 6≡ 0 (mod π), then the right-hand side is a pν−jth power in

R{t}. This means that the cover splits into pν−j irreducible components above Zβ, each

isomorphic to Zβ, which is a contradiction. To prove the claim, we will show that each

coefficient c′i of ti in g(e′t)/g(0), for i > 1, has valuation greater than ν − j+ 1
p−1 . By the

binomial theorem, g(e′t)/g(0) will be a pν−jth power. Let us note by Lemma 4.36 that,

in all cases, if ci is defined as in Step 1, then v(c′i) > v(ci)− i
3j.

In the case a 6≡ 0, 1 (mod π), it is clear from Lemma 4.36 that v(ci) > ν − j + 1
p−1

for i ≥ 3. Now, let e be such that v(e) = 1
3(ν + 1

p−1). We know from Step 1 that

v(ci) = v(g
(i)(0)
i!g(0) e

i) ≥ ν + 1
p−1 for i = 1, 2. Then

v(c′i) = ν +
1

p− 1
− i(v(e)− v(e′)) > ν +

1
p− 1

− i

3
j > ν − j +

1
p− 1

for i = 1, 2. This finishes the case a 6≡ 0, 1 (mod π). Note that the assumption p 6= 5 was

unnecessary here.

If a ≡ 1 (mod π), then for i ≥ 3, we have v(c′i) > v(ci)− i
3j. By Equation (4.3.3), we

have

v(c′i) ≥ ν − j +
1

p− 1
+
i− 3

3
(ν − j +

1
p− 1

− v1)− v(i)
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if i ≤ pν . By Lemma 4.35, v1 ≤ ν − j − 1. Since i−3
3 > v(i) whenever i ≥ 3 and p > 5, we

have v(c′i) > ν − j + 1
p−1 . For i = 1, 2, the proof is identical to the case a 6≡ 0, 1 (mod π).

For i > pn, Equation (4.3.4) gives that

v(c′i) ≥ ν − j +
1

p− 1
+
pν − 2

3
(ν − j +

1
p− 1

− v1).

Since ν − j > v1, we again have that v(c′i) > ν − j + 1
p−1 .

Lastly, suppose a ≡ 0 (mod π). By Lemma 4.28, we have v(ci) ≥ v(a)− v(i) + iv(e),

so v(c′i) ≥ v(a)− v(i) + iv(e′). By Lemma 4.36, this is equal to

ν − j +
1

p− 1
+ (i− 1)(ν − j +

1
p− 1

− v(a))− v(i).

Since j < ν − v(a) (Proposition 3.13), this is always greater than ν − j + 1
p−1 for i ≥ 3

and p > 5 except when i = p and j = ν − v(a). For i = 1, 2, the proof is again identical

to the case a 6≡ 0, 1 (mod π). 2

Proposition 4.38. In the case a ≡ 0 (mod π), there is, in fact, a new inseparable tail

Xc which is a pj-component with j = ν − v(a). Furthermore, Xc corresponds to the

disk of radius p−(v(a)+ 1
2(p−1)

) around x = a
2 . The two components of Zstr lying above Xc

correspond to the disks of radius p−( 1
p−1

) around z = ±
√

1.

Proof. Recall that the equations for (Y str)′ → X are given by

z2 =
x− a
x

and

yp
ν−j

= g(z) = (z + 1)r(z − 1)p
ν−r(z +

√
1− a)s(z −

√
1− a)p

ν−s.
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Since ν − j = v(a) and pv(a)|(r+ s) by Claim 4.27, we may multiply g(z) by an (r+ s)th

power. Multiplying by ( z+1
z−1)r+s(z − 1)−p

ν
(z −

√
1− a)−p

ν
, we may assume

g(z) =
((

z +
√

1− a
z + 1

)(
z − 1

z −
√

1− a

))s
.

By Remark 4.30, 1−
√

1− a = − r+s
r . For ease of notation, write µ = 1−

√
1− a. Then

v(µ) = v(a). Then

g(z) =
(

(1 +
µ

z + 1
)(1 +

µ

z − 1− µ)
)s

,

or

g(z) = 1 + 2sµ
z

z2 − 1
+O(µ2). (4.3.5)

This will be a more useful choice of g(z) for our purposes.

Let Xc be as in the theorem. Let (Xst)c be the minimal modification of Xst that

contains the component Xc, and let t be a coordinate corresponding to Xc. We will

show that the normalization of Xst
c in K((Y str)′) has special fiber above Xc consisting

of 2(pν−j−1) irreducible components, each an Artin-Schreier cover of conductor 2. These

each have genus p−1
2 > 0, by Corollary 2.13. But this means that Xc must have been

part of the stable model to begin with, as these components cannot be contracted in any

stable model.

Let us prove the claim. It is easy to see from the equation z2 = x−a
x that there are

two irreducible components of Zstr lying above Xc, corresponding to the disks of radius

|e′′| around ±−1, where v(e′′) = 1
2(p−1) . We pick a square root and call it

√
−1, and

we call the corresponding disk D. If Ŷ ′, Ẑ are the formal completions of ((Y str)′)st and

(Zstr)st along their special fibers, then after a possible finite extension of K, the torsor
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Ŷ ×Ẑ D → D is given generically by the equation

yp
ν−j

= 1 +
g′(
√
−1)

1!g(
√
−1)

(e′′t) +
g′′(
√
−1)

2!g(
√
−1)

(e′′t)2 + · · · .

Let di = g(i)(
√−1)

i!g(
√−1)

(e′′)i. For all i > 0, Equation (4.3.5) shows that v(g
(i)(
√−1)

i!g(
√−1)

) ≥

v(µ) = v(a) = ν − j. So for i > 2, v(di) > ν − j + 1
p−1 . For i = 1, di = g′(

√−1)

g(
√−1)

= O(µ2)

by direct calculation, so v(d1) ≥ 2v(µ) = 2v(a) > ν − j + 1
p−1 . For i = 2, g′′(z) =

2sµ 2z
(z2−1)3

(
−4(1 + z2) + 2z(z2 − 1)

)
by direct calculation. Then v(g′′(

√
−1)) = v(µ) =

ν − j. Since v(e′′) = 1
2(p−1) and v(g(

√
−1) = 0, we have that v(d2) = ν − j + 1

p−1 . By

Corollary 2.34, the special fiber of Ŷ ×Ẑ D splits into pν−j−1 Artin-Schreier covers of

conductor 2. This proves the claim, completing the proof of the Proposition. 2

Step 4. From Step 2, we know that fstr is defined over Kν as a Gstr-cover. Recall from

§2.5 that the minimal extension (Kstr)st/Kν over which the stable model of fstr is defined

is the extension cut out by the subgroup Γst ≤ GKν that acts trivially on f
str.

Lemma 4.39. The action of GKν on X is of prime-to-p order.

Proof. Let γ ∈ GKν act on X with order p. We know that both Xb and Xb′ contain

the specialization of a K0-rational point (namely, a and 0), which is fixed by γ. Since γ

must fix the unique singular point of X lying on any tail that it acts on, γ must fix two

points of each étale tail. Since P1
k has no automorphisms of order p fixing two points, γ

acts trivially on the étale tails. In the case a ≡ 1 (mod π), there is an inseparable tail

containing the specialization of the K0-rational point x = 1. So γ acts trivially on this
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tail as well. In the case a ≡ 0 (mod π), Proposition 4.38 tells us that the inseparable tail

contains the specialization of the K0-rational point x = a
2 . Again, γ acts trivially on this

tail. By Step 3, these are the only possible inseparable tails, so γ acts trivially on all tails.

Since γ acts trivially on the original component X0 and on all tails, it must fix every

singular point of X (each such point is determined by the set of tails it precedes and

the fact that it is singular). Since each interior component contains at least two of these

points, γ must fix each of these components pointwise. So γ fixes x pointwise, proving

the lemma. 2

Lemma 4.40. If γ ∈ GKν acts on Y with order p and acts trivially above all tails of X,

then γ acts trivially on Y
str.

Proof. Note that, by Lemma 4.39, the action of γ on Y is vertical. We proceed by inward

induction. Let W be a component of X intersecting a tail, and let V be a component

of Y str lying above W . Since γ acts trivially above tails of X, it must fix all of the

intersection points of V with a component, say V
′, above a tail of X. Let y be such a

point. Write H = Aut(V /W ). If γ acts nontrivially on V , then the inertia group Iy ≤ H

has order divisible by p. But since fstr is monotonic, the inertia group of V contains the

inertia group of V ′, and Proposition 2.17 (ii) shows that Iy must be prime to p. So γ acts

trivially. Inducting inwardly to the original component proves the lemma. 2

Proposition 4.41. (i) If a 6≡ 0, 1 (mod π), then the stable model of fstr can be defined

over a tame extension (Kstr)st of Kν .

(ii) If a ≡ 0 or 1 (mod π) then the stable model of fstr can be defined over a tame
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extension (Kstr)st of Kν( p
√

1 + u), where u ∈ Kν satisfies v(u) = 1.

Proof. Let γ ∈ GKν act on Y str with order p. We show that γ acts trivially above the étale

tails of X. The new tail Xb contains the specialization of x = a. Then the component

Zb lying above Xb contains the specialization of z = 0, by Equation (4.3.1). Now, in

Equation (4.3.1), we have g(0) = ±(
√

1− a)p
ν
. This means that the points of Y str above

z = 0 (thus x = a) are all K0-rational, as they are defined by the equation yp
ν

= g(0).

Similarly, Xb′ contains the specialization of x = 0, which corresponds to z = ∞. In

Equation 4.3.2, we can multiply g(z) by a pνth power to get an alternate equation

yp
ν

=
(
z + 1
z − 1

)r (z +
√

1− a
z −
√

1− a

)s
for the cover Y str → Zstr. Plugging ∞ into the right-hand side of this equation gives

yp
ν

= 1, which shows that the points of Y str above z =∞ (thus x = 0) are all K0-rational.

Thus, γ acts trivially above the étale tails of X. Since in the case a 6≡ 0, 1 (mod π), the

étale tails are the only tails (Proposition 4.37), Lemma 4.40 allows us to conclude (i).

Now, consider the case a ≡ 0 (mod π). By Proposition 4.38, there is an inseparable

tail Xc which is a pν−v(a)-component containing the specialization of x = a
2 . Then each

component of Zstr above Xc contains the specialization of one of z = ±
√
−1. Consider the

cover (Y str)′ → Zstr, where (Y str)′ = Y str/Qν−v(a) and Qν−v(a) is the unique subgroup of

Gstr of order pν−v(a). Equation (4.3.5) shows that this cover can be given by the equation

yp
v(a)

= 1 + 2sµ
z

z2 − 1
+O(µ2),

where v(µ) = v(a). Plugging in z = ±
√
−1, we get that yp

v(a)
= 1 + α, with v(α) = v(a).

Now, Remark 2.35 shows that 1 + α has a pv(a)−1st root in Rν , which is of the form
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1 + u with v(u) = 1. Then GKν ( p
√

1 + u) acts trivially above Xc for this cover. Since the

quotient by Qν−v(a) is radicial above Xc, it follows that γ ∈ GKν ( p
√

1 + u) fixes the fiber

of Y str above x = a
2 ∈ Xc pointwise. By Lemma 4.39, if γ acts on Y str with order p, then

γ acts trivially above Xc. Then (ii) follows from Lemma 4.40 when a ≡ 0 (mod π).

Lastly, consider the case a ≡ 1 (mod π). There is an inseparable tail Xc containing

the specialization of x = 1. By Proposition 2.19, Xc is a pν−v(s)-component. Then each

component of Zstr above Xc contains the specialization of one of z = ±
√

1− a. Consider

the cover (Y str)′ → Zstr, where (Y str)′ = Y str/Qν−v(s) and Qν−v(s) is the unique subgroup

of Gstr of order pν−v(s). After multiplying by pv(s)th powers, this cover can be given by

the equation

yp
s

=
(
z + 1
z − 1

)r
=
(

2z
z − 1

− 1
)r

.

Recall that, by Lemma 4.32, we have v(s) = v(
√

1− a). Plugging in z = ±
√

1− a

and multiplying by −1, which is a psth power in Kν , we get that yp
v(s)

= 1 + α, with

v(α) = v(s). We conclude (ii) as in the case a ≡ 0 (mod π). 2

Step 5. This is an immediate consequence of Lemmas 2.30 and 2.31.

Step 6. This is immediate from Lemma 2.28.

Step 7. Using Steps 5 and 6, it suffices to show that the νth higher ramification groups

for the extension (Kstr)st/K0 vanish, where (Kstr)st is defined as in Proposition 4.41.

Now, Step 4 shows that (Kstr)st is contained in a tame extension of Kν( p
√

1 + u), for

some u such that v(u) = 1. This is the compositum of Kν and K1( p
√

1 + u). By [Ser79,
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IV, Proposition 18], the νth higher ramification group for the upper numbering vanishes

for Kν/K0. By Example 2.9, the first higher ramification group for the upper number-

ing vanishes for K1( p
√

1 + u)/K0. By Lemma 2.8 the ith higher ramification group for

(Kstr)st/K0 for the upper numbering vanishes when i ≥ max(1, ν) = ν. Since n ≥ ν, the

nth higher ramification group vanishes as well. This concludes Step 7, and thus the proof

of Proposition 4.22. 2

The proof of Theorem 1.4 follows immediately from combining Propositions 4.1, 4.8,

4.9, 4.20, 4.21, and 4.22. 2
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Chapter 5

Further Investigation

I would like to examine the following questions in the near future:

Question 5.1. Does Theorem 1.4 hold in the m = 2 case even when we allow p = 3,

p = 5, or no prime-to-p branch points?

I expect techniques similar to those used in §4.3 to work in this case. When there

are no prime-to-p branch points, the issue is that there can be up to two new tails. In

the case of two new tails, we would ideally like to show that each of them contains the

specialization of a K0-rational point, and that there are no new inseparable tails. Then

we could arrive at the same conclusion as in §4.3.

Now, in the case of two new tails, the strong auxiliary cover fstr : Y str → X contains

two branch points a and b of branching index 2, and three branch points 0, 1, and ∞ of

p-power branching index. If none of the specializations of any of the five branch points

coalesce on the smooth model of X corresponding to the original component of the stable

reduction, and if in addition there are no inseparable tails, then we can in fact show that
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each new tail contains the specialization of a K0-rational point, using essentially the same

techniques as in §4.3. However, there are many more cases to consider.

If we allow p = 3 (even if we assume that there is a branch point of f with prime-

to-p branching index), then the stable reduction of f looks very different than what

we have in §4.3. In particular, Lemma 4.23 does not hold. In fact, if Xb is an étale

tail with ramification invariant σb = 3
2 , then it must intersect a p2-component. This is

because Lemma 2.14 shows that if Xb intersects a p-component, we would have to have

σb = hb/2, with hb prime to 3! With this possibility, many arguments in §4.3 fall apart.

In order to repair them, we would need to have good, explicit conditions characterizing

the following extensions, in analogy with Corollary 2.34: Say R is a complete discrete

valuation ring with fraction field K of characteristic 0, residue field k algebraically closed

of characteristic p, and uniformizer π. Suppose further that R contains the p2th roots of

unity. Write A = R{t} and L = Frac(A). We wish to characterize Z/p2-extensions M of

L such that the normalization B of A in M satisfies the following conditions:

• Spec B/π → Spec A/π is an étale extension with conductor 3.

• Spec B/π is integral.

If we allow p = 5 the difficulties are less severe. The only places where the assumption

p 6= 5 matters are for subtle inequalities like i−3
3 (1 + 1

p−1) > v(i) (see, for instance, the

proof of Corollary 4.29), which does not hold for p = i = 5, but does hold for any i > 3

and p > 5. I have worked out computations that fix this problem in most cases, but they

are messy and time does not permit their inclusion here.
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Question 5.2. What can be said if the condition m = 2 is relaxed in Theorem 1.4 (ii)?

Relaxing the condition m = 2 is more difficult, and I do not necessarily expect to

get the same result on the ramification of p in the field of moduli. Allowing arbitrary m

will require some new techniques, as the explicit calculations I have done in the m = 2

case will no longer work, because the strong auxiliary cover will no longer necessarily be

a pν-cyclic extension of P1. I am hopeful that, at least in the case where the deformation

data above the original component of X are all multiplicative (which is true in all of the

cases covered in Theorem 1.4), one can obtain results using variations on the deformation

theory of torsors under multiplicative group schemes that Wewers develops in [Wew05].

The case where there is an additive deformation datum above the original component

of X seems more difficult for several reasons. First, the numerical invariants obtained

from the deformation data are more flexible in this case, leading to a possibly more

complicated-looking stable reduction. In particular, we cannot use Proposition 2.41. Sec-

ond, Wewers’s deformation theory, which depends in an essential way on having a torsor

under a multiplicative group scheme, does not apply.

In any case, I would like to have some criteria for determining exactly when the stable

reduction of a three-point G-Galois cover, where G has a cyclic p-Sylow subgroup, will

have additive deformation data over the original component. Ideally, these criteria would

be based only on the group G and the branching behavior of the cover. Perhaps the

criteria will be restrictive enough that the cases where additive deformation data arise

can be dealt with on a case-by-case basis.

Question 5.3. What happens if we look at three-point G-Galois covers where G has a
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non-cyclic p-Sylow subgroup?

The most tractable case here for understanding the ramification of p in the field of

moduli is when the p-Sylow subgroup is elementary abelian. The most serious difficulty

here is that taking the auxiliary cover does not guarantee a simplification of the group-

theoretical structure. An advantage, however, is that one can still talk about deformation

data, and there will be examples where the deformation data over the original component

are all multiplicative. For these examples, it may be possible for the deformation theory

of [Wew05] to apply, and we may be able to make some progress.

Question 5.4. What happens if we consider covers with four (or more) branch points?

New issues arise here. This is partly because the branch points might collide modulo

p and partly because these covers now exist in continuous families, unlike in the case of

three-point covers. The case of a four-point cover where the Galois group G has p-Sylow

subgroup P of order p and m = |NG(P )/ZG(P )| = 2 has been analyzed to some extent

in [BW04]. There the goal is to determine when covers of this form have good reduction.

The authors give a lower bound on the ramification of p in the field of moduli in the case

where such a cover has bad reduction. This paper does not use deformation data, and

I would like to see if combining its techniques with deformation data can yield results

giving an upper bound on the ramification of p in the field of moduli. Perhaps we can

even replace the assumption m = 2 by some weaker assumption involving multiplicative

reduction.
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http://www.math.u-bordeaux1.fr/∼matignon/preprints.html.

[Hum75] Humphreys, James E. “Linear Algebraic Groups,” Springer-Verlag, New York,

1975.

[Kat86] Katz, Nicholas. “Local-to-Global Extensions of Fundamental Groups,” Ann.

Inst. Fourier, Grenoble 36 (1986), 69–106.

[Liu02] Liu, Qing. “Algebraic Geometry and Arithmetic Curves,” Oxford University

Press, Oxford, 2002.

[OP08] Obus, Andrew; Pries, Rachel J. “Wild Cyclic-by-Tame Extensions,”

arXiv:math.AG/08074790, (2008).

[Pri02] Pries, Rachel J. “Families of Wildly Ramified Covers of Curves,” Amer. J.

Math. 124 (2002), no. 4, 737–768.

[Pri06] Pries, Rachel J. “Wildly Ramified Covers with Large Genus,” J. Number The-

ory, 119 (2006), 194–209.

133



[Ray90] Raynaud, Michel. “p-Groupes et Réduction Semi-Stable des Courbes,” the
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Boston, Boston, MA, 1990.

[Ray94] Raynaud, Michel. “Revêtements de la Droite Affine en Caractéristique p > 0
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