Lesson Plan Template Draft: SACC Active Learning Guide Book Lesson 4.5 Linear Equations and Problem Solving (hybrid)

Active learning strategies that this lesson employs:

Since this lesson employs all of the principles and methods used in sections 4.1, 4.2 and 4.3, we will use the situations set forth in those lessons and apply them here. In this lesson, we solve verbal and real-life situational problems using previously developed skills. This lesson will be combined with the other lesson in section 4.

Real-world connection / focus / word problem connecting lesson to real-world: (What is the connection between this content and a student's future study or the "real world"? What is the context of this lesson? What problem will you use to hook students into the lesson to make a real-world connection to content that they are going to learn today?)

How are you using this context to introduce or reinforce the teaching point?
This is an application lesson of the 2 algebraic methods of solving linear simultaneous equations.

We can use the verbal problems that were in 4.1, 4.2 and 4.3, if there seemed too advanced for those lessons.

Anticipated time	Stage and aim	Procedure
10 mins .	The students will learn how to mathematically set up a problem from the written words.	The teacher will begin by outlining the procedure to set up a verbal problem. The teacher will impress upon the students how important it is to read the problem very carefully. The steps to use will be put on the board: Highlight the important information that will help to write the 2 equations by translating the words into mathematical expressions. Sometimes, a picture will be helpful. Define the variable that are being used by indicating what they represent. Write 2 equations. Form the equations indicating how the different mathematical expressions are related. Use either the substitution method of the elimination method to solve the equations. Check the answers by substituting the ordered pair in both of the original equations. Answer the question indicating what the unknowns represent.

	L $=4 x-5$
substitution	

Differentiation: In what places in the lesson	Where are these on your lesson plan?
are you differentiating for students in	
different ability groups?	.

Ideas for extensions, notes, considerations, or alternative plans:

