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Abstract

The paper considers the problem of out-of-sample risk estimation under the high dimensional settings

where standard techniques such as K-fold cross validation suffer from large biases. Motivated by the low

bias of the leave-one-out cross validation (LO) method, we propose a computationally efficient closed-form

approximate leave-one-out formula (ALO) for a large class of regularized estimators. Given the regularized

estimate, calculating ALO requires minor computational overhead. With minor assumptions about the

data generating process, we obtain a finite-sample upper bound for |LO−ALO|. Our theoretical analysis

illustrates that |LO−ALO| → 0 with overwhelming probability, when n, p→∞, where the dimension p of

the feature vectors may be comparable with or even greater than the number of observations, n. Despite

the high-dimensionality of the problem, our theoretical results do not require any sparsity assumption

on the vector of regression coefficients. Our extensive numerical experiments show that |LO − ALO|

decreases as n, p increase, revealing the excellent finite sample performance of ALO. We further illustrate

the usefulness of our proposed out-of-sample risk estimation method by an example of real recordings

from spatially sensitive neurons (grid cells) in the medial entorhinal cortex of a rat.

Keywords: High-dimensional statistics, Regularized estimation, Out-of-sample risk estimation, Cross vali-

dation, Generalized linear models.

1 Introduction

1.1 Main objectives

Consider a dataset D = {(y1,x1), (y2,x2), . . . , (yn,xn)} where xi ∈ Rp and yi ∈ R. In many applications,

we model these observations as independent and identically distributed draws from some joint distribution
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†A.M. gratefully acknowledges NSF DMS grant 1810888.
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q(yi|x>i β∗)p(xi) where the superscript > denotes the transpose of a vector. To estimate the parameter β∗

in such models, researchers often use the optimization problem

β̂ , arg min
β∈Rp

{ n∑
i=1

`(yi|x>i β) + λr(β)
}
, (1)

where ` is called the loss function, and is typically set to − log q(yi|x>i β) when q is known, and r(β) is

called the regularizer. In many applications, such as parameter tuning or model selection, one would like

to estimate the out-of-sample prediction error, defined as

Errextra , E[φ(ynew,x
>
newβ̂)|D], (2)

where (ynew,xnew) is a new sample from the distribution q(y|x>β∗)p(x) independent of D, and φ is a

function that measures the closeness of ynew to x>newβ̂. A standard choice for φ is − log q(y|x>β). However,

in general we may use other functions too. Since Errextra depends on the rarely known joint distribution of

(yi,xi), a core problem in model assessment is to estimate it from data.

This paper considers a computationally efficient approach to the problem of estimating Errextra under

the high-dimensional setting, where both n and p are large, but n/p is a fixed number, possibly less than one.

This high dimensional setting has received a lot of attention [El Karoui, 2018, El Karoui et al., 2013, Bean

et al., 2013,Donoho and Montanari, 2016,Nevo and Ritov, 2016,Su et al., 2017,Dobriban and Wager, 2018].

But the problem of estimating Errextra has not been carefully studied in generality, and as a result the issues

of the existing techniques and their remedies have not been explored. For instance, a popular technique

in practice is the K-fold cross validation, where K is a small number, e.g. 3 or 5. Figure 1 compares the

performance of the K-fold cross validation for 4 different values of K on a LASSO linear regression problem.

This figure implies that in high-dimensional settings, K-fold cross validation suffers from a large bias, unless

K is a large number. This bias is due to the fact that in high-dimensional settings the fold that is removed

in the training phase, may have a major effect on the solution of (1). This claim can be easily seen for

LASSO linear regression with an IID design matrix using phase transition diagrams [Donoho et al., 2011].

To summarize, as the number of folds increases, the bias of the estimates reduces at the expense of a higher

computational complexity.

In this paper, we consider the most extreme form of cross validation, namely leave-one-out cross-

validation (LO), which according to Figure 1 is the least biased cross validation based estimate of the

out-of-sample error. We will use the fact that both n and p are large numbers to approximate LO for both

smooth and non-smooth regularizers. Our estimate, called approximate leave-one-out (ALO), requires solv-

ing the optimization problem (1) once. Then, it uses β̂ to approximate LO without solving the optimization

problem again. In addition to obtaining β̂, ALO requires a matrix inversion and two matrix-matrix multi-
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Figure 1: Comparison of K-fold cross validation (for K = 3, 5, 10) and leave-one-out cross validation with
the true (oracle-based) out-of-sample error for the LASSO problem where `(y|x>β) = 1

2(y − x>β)2 and
r(β) = ‖β‖1. In high-dimensional settings the upward bias of K-fold CV clearly decreases as number of
folds increase. Data is y ∼ N(Xβ∗, σ2I) where X ∈ Rp×n. The number of nonzero elements of the true
β∗ is set to k and their values is set to 1/3. Dimensions are (p, n, k) =

(
1000, 250, 50

)
and σ = 2. The rows

of X are independent N(0, I). Extra-sample test data is ynew ∼ N(x>newβ
∗, σ2) where xnew ∼ N(0, I). The

true (oracle-based) out-of-sample prediction error is Errextra = E[(ynew − x>newβ̂)2|y,X] = σ2 + ‖β̂ − β∗‖22.
All depicted quantities are averages based on 500 random independent samples, and error bars depict one
standard error.
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Figure 2: The time to compute ALO and LO. FIT refers to the time to fit β̂ and the ALO time includes
computing β̂. Calculating LO takes orders of magnitude longer than ALO.

plications. Despite these extra steps ALO offers a significant computational saving compared to LO. This

point is illustrated in Figure 2 by comparing the computational complexity of ALO with that of LO and a

single fit as both n and p increase for various data shapes, that is n > p, n = p, and n < p. Details of this

simulation are given in Section 5.2.4.

The main algorithmic and theoretical contributions of this paper are as follows. First, our computational

complexity comparison between LO and ALO, confirmed by extensive numerical experiments, show that

ALO offers a major reduction in the computational complexity of estimating the out-of-sample risk. More-

over, with minor assumptions about the data generating process, we obtain a finite-sample upper bound for

|LO − ALO|, proving that under the high-dimensional settings ALO presents a sensible approximation of

LO for a large class of regularized estimation problems in the generalized linear family. Finally, we provide

readily usable R implementation of ALO online; see https://github.com/Francis-Hsu/alocv, and

we illustrate the usefulness of our proposed out-of-sample risk estimation in unexpected scenarios that fail to

satisfy the assumptions of our theoretical framework. Specifically, we present a novel neuroscience example

about the computationally efficient tuning of the spatial scale in estimating an inhomogeneous spatial point

process.

1.2 Relevant work

The problem of estimating Errextra from D has been studied for (at least) the past 50 years. Methods such

as cross validation (CV) [Stone, 1974,Geisser, 1975], Allen’s PRESS statistic [Allen, 1974], generalized cross

validation (GCV) [Craven and Wahba, 1979, Golub et al., 1979], and bootstrap [Efron, 1983] have been

proposed for this purpose. In the high dimensional setting, employing LO or bootstrap is computationally

expensive and the less computationally complex approaches such as 5-fold (or 10-fold) CV suffer from high
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bias as illustrated in Figure 1.

As for the computationally efficient approaches, extensions of Allen’s PRESS [Allen, 1974], and gen-

eralized cross validation (GCV) [Craven and Wahba, 1979, Golub et al., 1979] to non-linear models and

classifiers with ridge penalty are well known: smoothing splines for generalized linear models in [O’Sullivan

et al., 1986], spline estimation of generalized additive models [Burman, 1990], ridge estimators in logistic

regression in [Cessie and Houwelingen, 1992], smoothing splines with non-Gaussian data using various exten-

sions of GCV in [Gu, 1992,Xiang and Wahba, 1996,Gu and Xiang, 2001], support vector machines [Opper

and Winther, 2000], kernel logistic regression in [Cawley and Talbot, 2008], and Cox’s proportional hazard

model with a ridge penalty in [Meijer and Goeman, 2013]. Moreover, leave-one-out approximations for

posterior means of Bayesian models with Gaussian process priors using the Laplace approximation and

Expectation Propagation were introduced in [Vehtari et al., 2016], and extended in [Vehtari et al., 2017].

Despite the existence of this vast literature, the performance of such approximations in high-dimensional

settings is unknown except for the straightforward linear ridge regression framework. Moreover, past heuris-

tic approaches have only considered the ridge regularizer. The results of this paper include a much broader

set of regularizers; examples include but are not limited to LASSO [Tibshirani, 1996], elastic net [Zou and

Hastie, 2005] and bridge [Frank and Friedman, 1993], just to name a few.

More recently, a few papers have studied the problem of estimating Errextra under high-dimensional

settings [Mousavi et al., 2018,Obuchi and Kabashima, 2016]. The approximate message passing framework

introduced in [Maleki, 2011, Donoho et al., 2009] was used in [Mousavi et al., 2018] to obtain an estimate

of Errextra for LASSO linear regression. In another related paper, [Obuchi and Kabashima, 2016] obtained

similar results using approximations popular in statistical physics. The results of [Mousavi et al., 2018]

and [Obuchi and Kabashima, 2016] are only valid for cases where the design matrix has IID entries and

the empirical distribution of the regression coefficients converges weakly to a distribution with a bounded

second moment. In this paper, our theoretical analysis includes correlated design matrices, and regularized

estimators beyond LASSO linear regression.

In addition to these approaches, another contribution has been to study GCV and Errextra for restricted

least-squares estimators of submodels of the overall model without regularization [Breiman and Freedman,

1983, Leeb, 2008, Leeb, 2009]. In [Leeb, 2008] it was shown that a variant of GCV converges to Errextra

uniformly over a collection of candidate models provided that there are not too many candidate models,

ruling out complete subset selection. Moreover, since restricted least-squares estimators are studied, the

conclusions exclude the regularized problems considered in this paper.

Finally, it is worth mentioning that in another line of work, strategies have been proposed to obtain

unbiased estimates of the in-sample error. In contrast to the out-of-sample error, the in-sample error is

about the prediction of new responses for the same explanatory variables as in the training data. The

literature of in-sample error estimation is too vast to be reviewed here. Mallow’s Cp [Mallows, 1973],
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Akaike’s Information Criterion (AIC) [Akaike, 1974,Hurvich and Tsai, 1989], Stein’s Unbiased Risk Estimate

(SURE) [Stein, 1981,Zou et al., 2007,Tibshirani and Taylor, 2012] and Efron’s Covariance Penalty [Efron,

1986] are seminal examples of in-sample error estimators. When n is much larger than p, the in-sample

prediction error is expected to be close to the out-of-sample prediction error. The problem is that in

high-dimensional settings, where n is of the same order as (or even smaller than) p, the in-sample and

out-of-sample errors are different.

The rest of the paper is organized as follows. After introducing the notations, we first present the

approximate leave-one-out formula (ALO) for twice differentiable regularizers in Section 2.1. In Section

2.2, we show how ALO can be extended to nonsmooth regularizers such as LASSO using Theorem 1

and Theorem 2. In Section 3, we compare the computational complexity and memory requirements of

ALO and LO. In Section 4, we present Theorem 3, illustrating with minor assumptions about the data

generating process that |LO− ALO| → 0 with overwhelming probability, when n, p→∞, where p may be

comparable with or even greater than n. The numerical examples in Section 5 study the statistical accuracy

and computational efficiency of the approximate leave-one-out approach. To illustrate the accuracy and

computational efficiency of ALO we apply it to synthetic and real data in Section 5. We generate synthetic

data, and compare ALO and LO for elastic-net linear regression in Section 5.2.1, LASSO logistic regression

in Section 5.2.2, and elastic-net Poisson regression in Section 5.2.3. For real data we apply LASSO, elastic-

net and ridge logistic regression to sonar returns from two undersea targets in Section 5.3.1, and we apply

LASSO Poisson regression to real recordings from spatially sensitive neurons (grid cells) in Section 5.3.2.

Our synthetic and real data examples cover various data shapes, that is n > p, n = p and n < p. In Section

6 we discuss directions for future work. Technical proofs are collected in Section A, the appendix.

1.3 Notation

We first review the notations that will be used in the rest of the paper. Let x>i ∈ R1×p stand for the ith

row of X ∈ Rn×p. y/i ∈ R(n−1)×1 and X/i ∈ R(n−1)×p stand for y and X, excluding the ith entry yi and

the ith row x>i , respectively. The vector a�b stands for the entry-wise product of two vectors a and b. For

two vectors a and b, we use a < b to indicate element-wise inequalities. Moreover, |a| stands for the vector

obtained by applying the element-wise absolute value to every element of a. For a set S ⊂ {1, 2, 3, . . . , p},

let XS stands for the submatrix of X restricted to columns indexed by S. Likewise, we let xi,S ∈ R|S|×1

stand for for subvector of xi restricted to the entries indexed by S. For a vector a, depending on which

notation is easier to read, we may use [a]i or ai to denote the ith entry of a. The diagonal matrix with
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elements of the vector a is referred to as diag[a]. Moreover, define

φ̇(y, z) ,
∂φ(y, z)

∂z
, ˙̀

i(β) ,
∂`(yi|z)
∂z

|z=x>i β,
῭
i(β) ,

∂2`(yi|z)
∂z2

|z=x>i β

˙̀
/i(.) , [ ˙̀

1(.), · · · , ˙̀
i−1(.), ˙̀

i+1(.), · · · , ˙̀
n(.)]>,

῭
/i(.) , [῭1(.), · · · , ῭

i−1(.), ῭
i+1(.), · · · , ῭

n(.)]>.

The notation poly log n denotes polynomial of log n with a finite degree. Finally, let σmax(A) and σmin(A)

stand for the largest and smallest singular values of A, respectively.

2 Approximate leave-one-out

2.1 Twice differentiable losses and regularizers

The leave-one-out cross validation estimate is defined through the following formula:

LO ,
1

n

n∑
i=1

φ(yi,x
>
i β̂/i), (3)

where
β̂/i , arg min

β∈Rp

{∑
j 6=i

`(yj |x>j β) + λr(β)
}
, (4)

is the leave-i-out estimate. If done naively, the calculation of LO asks for the optimization problem (4) to

be solved n times, a computationally demanding task when p and n are large. To resolve this issue, we use

the following simple strategy: Instead of solving (4) accurately, we use one step of the Newton method for

solving (4) with initialization β̂. Note that this step requires both ` and r to be twice differentiable. We

will explain how this limitation can be lifted in the next section. The Newton step leads to the following

simple approximation of β̂/i:
1

β̃/i = β̂ +
(∑
j 6=i
xjx

>
j

῭(yj |x>j β̂) + λdiag[r̈(β̂)]
)−1

xi ˙̀(yi|x>i β̂),

where β̂ is defined in (1). Note that
∑

j 6=i xjx
>
j

῭(yj |x>j β̂)+λ diag[r̈(β̂)] is still dependent on the observation

that is removed. Hence, the process of computing the inverse (or solving a linear equation) must be

repeated n times. Standard methods for calculating inverses (or solving linear equations) require cubic time

and quadratic space (see Appendix C.3 in [Boyd and Vandenberghe, 2004]), rendering them impractical

for high-dimensional applications when repeated n times2. We use the Woodburry lemma to reduce the

1Note that in the rest of the paper for notational simplicity of our theoretical results we have assumed that r(β) =
∑p
i=1 r(βi).

However, the extension to non-separable regularizers is straightforward.
2A natural idea for reducing the computational burden involves exploiting structures (such as sparsity and banded-ness) of

the involved matrices. However, in this paper we do not make any assumption regarding the structure of X.
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computational cost:

(∑
j 6=i
xjx

>
j

῭(yj |x>j β̂) + λ diag[r̈(β̂)]
)−1

= J−1 +
J−1xi ῭(yi|x>i β̂)x>i J

−1

1− x>i J−1xi ῭(yi|x>i β̂)
, (5)

where J = (
∑n

j=1 xjx
>
j

῭(yj |x>j β̂) + λ diag[r̈(β̂)]). Following this approach we define ALO as

ALO ,
1

n

n∑
i=1

φ
(
yi,x

>
i β̃/i

)
=

1

n

n∑
i=1

φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)

῭
i(β̂)

)(
Hii

1−Hii

))
, (6)

where

H , X
(
λdiag[r̈(β̂)] +X> diag[῭(β̂)]X

)−1
X> diag[῭(β̂)]. (7)

Algorithm 1 summarizes how one should obtain an ALO estimate of the Errextra. We will show that under

the high-dimensional settings one Newton step is sufficient for obtaining a good approximation of β̂/i, and

the difference |ALO − LO| is small when either n or both n, p are large. However, before that we resolve

the differentiability issue of the approach we discussed above.

Algorithm 1 Risk estimation with ALO for twice differentiable losses and regularizers

Input. (x1, y1), (x2, y2), . . . , (xn, yn).
Output. Errextra estimate.

1. Calculate β̂ = arg min
β∈Rp

{∑n
i=1 `(yi|x>i β) + λr(β)

}
.

2. Obtain H = X
(
λ diag[r̈(β̂)] +X> diag[῭(β̂)]X

)−1
X> diag[῭(β̂)].

3. The estimate of Errextra is given by 1
n

∑n
i=1 φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)
῭
i(β̂)

)(
Hii

1−Hii

))
.

2.2 Nonsmooth regularizers

The Newton step, used in the derivation of ALO, requires the twice differentiability of the loss function

and regularizer. However, in many modern applications non-smooth regularizers, such as LASSO, are

preferable. In this section, we explain how ALO can be used for non-smooth regularizers. We start with

the `1-regularizer, and then extend it to the other bridge estimators. A similar approach can be used for

other non-smooth regularizers. Consider

β̂ , arg min
β∈Rp

{ n∑
i=1

`(yi|x>i β) + λ‖β‖1
}
. (8)
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Let ĝ be a subgradient of ‖β‖1 at β̂, denoted by ĝ ∈ ∂‖β̂‖1. Then, the pair (β̂, ĝ) must satisfy the

zero-subgradient condition
n∑
i=1

xi ˙̀(yi|x>i β̂) + λĝ = 0.

As a starting point we use a smooth approximation of the function ‖β‖1 in our ALO formula. For instance,

we can use the following approximation introduced in [Schmidt et al., 2007]:

rα(β) =

p∑
i=1

1

α

(
log(1 + eαβi) + log(1 + e−αβi)

)
.

Since limα→∞ r
α(β) = ‖β‖1, we can use

β̂α , arg min
β∈Rp

{ n∑
i=1

`(yi|x>i β) + λ

p∑
i=1

rα(βi)
}
, (9)

to obtain the following formula for ALO:

ALOα ,
1

n

n∑
i=1

φ

(
yi,x

>
i β̂

α +

(
˙̀
i(β̂

α)
῭
i(β̂α)

)(
Hα
ii

1−Hα
ii

))
(10)

whereHα ,X
(
λdiag[r̈(β̂α)] +X> diag[῭(β̂α)]X

)−1
X> diag[῭(β̂α)].Note that ‖β̂α−β̂‖2 → 0 as α→∞,

according to Lemma 15 in Section A.2. Therefore, we take the α→∞ limit in (10), yielding a simplification

of ALOα in this limit. To prove this claim, we denote the active set of β̂ with S, and we suppose the following:

Assumption 1. β̂ is the unique global minimizer of (1).

Assumption 2. β̂α is the unique global minimizer of (9) for every value of α.

Assumption 3. ῭(y|x>β) is a continuous function of β.

Assumption 4. The strict dual feasibility condition ‖ĝSc‖∞ < 1 holds.

Theorem 1. If Assumptions 1,2,3 and 4 hold, then

lim
α→∞

ALOα =
1

n

n∑
i=1

φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)

῭
i(β̂)

)(
Hii

1−Hii

))
, (11)

where H = XS

(
X>S diag[῭(β̂)]XS

)−1
X>S diag[῭(β̂)].

The proof of this theorem is presented in Section A.2. For the rest of the paper, the right hand side of

(11) is the ALO formula we use as an approximation of LO for LASSO problems. In the simulation section,

we show that the formula we obtain in Theorem 1 offers an accurate estimate of the out-of-sample prediction

error. For instance, in the standard LASSO problem, where `(u, v) = (u−v)2/2 and r(β) = ‖β‖1, Theorem
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Figure 3: Out-of-sample prediction error versus ALO. Data is y ∼ N(Xβ∗, σ2I) where σ2 = 1 and
X ∈ Rp×n with p = 10000 and n = 2000. The number of nonzero elements of the true β∗ is set to k = 400
and their values is set to 1. The rows x>i of the predictor matrix are generated randomly as N(0,Σ) with
correlation structure cor(Xij , Xij′) = 0.3 for all i = 1, . . . , n and j, j′ = 1, · · · , p. The covariance matrix Σ
is scaled such the signal variance var(x>β∗) = 1. Out-of-sample test data is ynew ∼ N(x>newβ

∗, σ2) where
xnew ∼ N(0,Σ). Out-of-sample error is calculated as E(ynew,xnew)[(ynew − x>newβ̂)2|y,X] = σ2 + ‖Σ1/2(β̂ −
β∗‖22 and ALO is calculated using equation (12).

1 gives the following estimate of the out-of-sample prediction error:

lim
α→∞

ALOα =
1

n

n∑
i=1

(yi − x>i β̂)2

(1−Hii)2
, (12)

where H = XS

(
X>SXS

)−1
X>S . Figure 3 compares this estimate with the oracle estimate of the out-of-

sample prediction error on a LASSO example. More extensive simulations are reported in Section 5.

Note that Assumptions 1,2 and 3 hold for most of the practical problems. For instance, to study the

conditions under which Assumption 1 holds refer to [Tibshirani et al., 2013]. Moreover, for `(u, v) =

(u− v)2/2, Assumption 1 is a consequence of Assumption 4 [Wainwright, 2009]. Assumption 4 also holds in

many cases with probability one with respect to the randomness of the dataset [Wainwright, 2009,Tibshirani

and Taylor, 2012]. Even if this assumption is violated in a specific problem (note that checking this

assumption is straightforward), we can use the following theorem to evaluate the accuracy of the ALO

formula in Theorem 1.

Theorem 2. Let S and T denote the active set of β̂, and the set of zero coefficients at which the subgradient

vector is equal to 1 or −1. Then,

x>i,S

(
X>S diag[῭(β̂)]XS

)−1
xi,S ῭

i(β̂) < lim inf
α→∞

Hα
ii

lim sup
α→∞

Hα
ii < x

>
i,S∪T

(
X>S∪T diag[῭(β̂)]XS∪T

)−1
xi,S∪T ῭

i(β̂)
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This Theorem is proved in A.3. A simple implication of this theorem is that

lim sup
α→∞

ALOα ≤ 1

n

n∑
i=1

φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)

῭
i(β̂)

)(
Hh
ii

1−Hh
ii

))
, (13)

and

lim inf
α→∞

ALOα ≥ 1

n

n∑
i=1

φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)

῭
i(β̂)

)(
H l
ii

1−H l
ii

))
, (14)

where

H l = XS

(
X>S diag[῭(β̂)]XS

)−1
X>S diag[῭(β̂)],

Hh = XS∪T

(
X>S∪T diag[῭(β̂)]XS∪T

)−1
X>S∪T diag[῭(β̂)]. (15)

By comparing (13) and (14) we can evaluate the error in our simple formula of the risk, presented in

Theorem 1. The approach we proposed above can be extended to other non-differentiable regularizers too.

Below we consider two other popular classes of estimators: (i) bridge and (ii) elastic net, and show how we

can derive ALO formulas for each estimator.

Bridge estimators: Consider the class of bridge estimators

β̂ , arg min
β∈Rp

{ n∑
i=1

`(yi|x>i β) + λ‖β‖qq
}
, (16)

where q is a number between (1, 2). Note that these regularizers are only one time differentiable at zero.

Hence, the Newton method introduced in Section 2.1 is not directly applicable. One can argue intuitively

that since the regularizer is differentiable at zero, none of the regression coefficients will be zero. Hence, the

regularizer is locally twice differentiable and formula (6) works well. While this argument is often correct,

we can again use the idea introduced above for LASSO to obtain the following ALO formula that can be

used even when an estimate of 0 is observed:

1

n

n∑
i=1

φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)

῭
i(β̂)

)(
Hii

1−Hii

))
, (17)

where if we define S , {i : βi 6= 0} and for u 6= 0, r̈q(u) , q(q − 1)|u|q−2, then

H = XS

(
X>S diag[῭(β̂)]XS + λdiag[r̈qS(β̂)]

)−1
X>S diag[῭(β̂)]. (18)

This formula is derived in Section A.4.

Elastic-net: Finally, we consider the following elastic-net estimator

β̂ , arg min
β∈Rp

{ n∑
i=1

`(yi|x>i β) + λ1‖β‖22 + λ2‖β‖1
}
. (19)
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Again by smoothing the `1-regularizer (similar to what we did for LASSO) we obtain the following ALO

formula for the out-of-sample predictor error:

1

n

n∑
i=1

φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)

῭
i(β̂)

)(
Hii

1−Hii

))
,

where S = {i : β̂i 6= 0}, and

H = XS

(
X>S diag[῭(β̂)]XS + 2λ1I

)−1
X>S diag[῭(β̂)]. (20)

We do not derive this formula, since it follows exactly the same lines as those of LASSO and bridge.

Algorithm 2 summarizes all the calculations required for the calculation of ALO for elastic-net.

Algorithm 2 Risk estimation with ALO for elastic-net regularizer

Input. (x1, y1), (x2, y2), . . . , (xn, yn).
Output. Errextra estimate.

1. Calculate β̂ = arg min
β∈Rp

{∑n
i=1 `(yi|x>i β) + λ1‖β‖22 + λ2‖β‖1

}
.

2. Calculate S = {i : β̂i 6= 0}.

3. Obtain H = XS

(
X>S diag[῭(β̂)]XS + 2λ1I

)−1
X>S diag[῭(β̂)], where XS only includes the columns

of X that are in S.

4. The estimate of Errextra is given by 1
n

∑n
i=1 φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)
῭
i(β̂)

)(
Hii

1−Hii

))
.

3 Computational complexity and memory requirements of ALO

Counting the number of floating point operations algorithms require is a standard approach for comparing

their computational complexities. In this section, we calculate and compare the number of operations

required by ALO and LO. We first start with Algorithm 1 and then discuss Algorithm 2.

Algorithm 1

Before we start the calculations, we should warn the reader that in many cases the specific structure of the

loss and/or the regularizer enables more efficient implementation of the formulas. However, here we consider

the worst case scenario. Furthermore, the calculations below are concerned with the implementation of ALO

and LO on a single computer, and we have not explored their parallel or distributed implementations.

The first step of Algorithm 1 requires solving an optimization problem. Several different methods exist

for solving this optimization problem. Here, we discuss the interior point method and the accelerated

gradient descent algorithm. Suppose that our goal is to reach accuracy ε. Then, interior point method

requires O(log(1/ε)) iterations to reach this accuracy, while accelerated gradient descent requires O( 1√
ε
)
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iterations [Nesterov, 2013]. Furthermore, each iteration of the accelerated gradient descent requires O(np)

operations, while each iteration of the interior point method requires O(p3) operations.

Regarding the memory usage of these two algorithms, note that in the accelerated gradient descent

algorithm the memory is mainly used for storing matrix X. Hence, the amount of memory that is required

by this algorithm is O(np). On the other hand, interior point method uses O(p3) of memory.

The second step of Algorithm 1 is to calculate the matrix H. This requires inverting the matrix(
λdiag[r̈(β̂)] +X> diag[῭(β̂)]X

)−1
. In general, this inversion requires O(p3) (e.g. by using Cholesky

factorization). However, if n is much smaller than p, then one can use a better trick for performing the

matrix inversion; suppose that both ` and r are strongly convex at β̂ and define Γ , (diag[῭(β̂)])
1
2 , and

Λ , λdiag[r̈(β̂)]. Then, from the matrix inversion lemma we have

X(X>Γ2X + Λ)−1X> = XΛ−1X> −XΛ−1X>Γ(I + ΓXΛ−1X>Γ)−1ΓXΛ−1X>. (21)

The inversion (I + ΓXΛ−1X>Γ)−1 requires O(n3) operations and O(np) of memory (the main memory

usage is for storingX). Also, the other matrix-matrix multiplications require O(n2p+n3) operations. Hence,

overall if we use the matrix inversion lemma, then the calculation of H requires O(n3 +n2p) operations. In

summary, the calculation of H requires O(min(p3 + np2, n3 + n2p)). Also, the amount of memory that is

required by the algorithm is O(np). The last step of ALO, i.e. Step 3 in Algorithm 1, requires only O(np)

operations. Hence, the calculations of ALO in Algorithm 1 requires

1. Through interior point method: O(min(p3 log(1/ε) + p3 + np2, p3 log(1/ε) + n3 + n2p))

2. Through accelerated gradient descent: O(min(np 1√
ε

+ p3 + np2, np 1√
ε

+ n3 + n2p))

Similarly, the calculation of the LO requires solving n optimization problem of the form (4). Hence, the

number of floating point operations that are required for LO are:

1. Through interior point method: O(np3 log(1/ε)).

2. Through accelerated gradient descent: O(n2p 1√
ε
).

Algorithm 2

Note that in Algorithm 2, we have used the specific form of the regularizer and simplified the form of H.

Hence, this allows for faster calculation of H and equivalently faster calculation of the ALO estimate. Again

the first step of calculating ALO is to solve the optimization problem. Solving this optimization problem

by the interior point method or accelerated proximal gradient descent requires O(p3 log(1/ε)) and O(np 1√
ε
)

floating point operations respectively. The next step is to calculate H. If β̂ is s-sparse, i.e., has only s

non-zero coefficients, then the calculation of H requires O(s3 + ns2) floating point operations. Also, the

13



amount of memory required for this inversion is O(s2). Finally, the last step requires O(np) operations.

Hence, calculating an ALO estimate of the risk requires:

1. Through interior point method: O(p3 log(1/ε) + s3 + ns2 + np).

2. Through accelerated proximal gradient descent: O(np 1√
ε

+ s3 + ns2 + np)

The calculations of LO in the worst case is similar to what we had in the previous section:3

1. Through interior point method: O(np3 log(1/ε)).

2. Through accelerated proximal gradient descent: O(n2p 1√
ε
).

In this section, we used the number of floating point operations to compare the computational complexity

of ALO and LO . However, since this approach is based on the worst case scenarios and is not capable of

capturing the constants, it is less accurate than comparing the timing of algorithms through simulations.

Hence, Section 5 compares the performance of ALO and LO through simulations.

Memory usage

First, we discuss Algorithm 1. We only consider the accelerated gradient descent algorithm. As discussed

above, the amount of memory that is required for Step 1 of ALO is O(np) (the main memory usage is for stor-

ing matrix X). For the second step, direct inversion of
(
λ diag[r̈(β̂)] +X> diag[῭(β̂)]X

)−1
requires O(p2)

of memory. However, by using the formula derived in (21) the memory usage reduces to O(n2) (for inverting

(I + ΓXΛ−1X>Γ)−1). Hence, the total amount of memory required for the second step of Algorithm 1 is

O(min(np+n2, np+p2)): np for storing X and n2 or p2 for calculating
(
λ diag[r̈(β̂)] +X> diag[῭(β̂)]X

)−1
.

The last step of ALO requires negligible amount of memory. Hence, the total amount of memory ALO re-

quires especially when n < p, is O(np+ n2), which is the same as O(np). Note that the amount of memory

required by LO is also O(np), since it requires to store X.

The situation is even more favorable for ALO in Algorithm 2; all the memory requirements are the

same as before, except that the amount of memory that is required for the calculation and storing of(
X>S diag[῭(β̂)]XS + 2λ1I

)−1
is O(s2).

4 Theoretical Results in High Dimensions

4.1 Assumptions

In this section, we introduce assumptions later used in our theoretical results. The assumptions and theo-

retical results that follow are presented for finite sample sizes. However, the final conclusions of this paper

3It is known that after a finite number of iterations the estimates of proximal gradient descent becomes sparse, and hence
the iterations require less operations. Hence, in practice the sparsity can reduce the computational complexity of calculating
LO even though this gain is not captured in the worst case analysis of this section.
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are focused on the high-dimensional asymptotic setting in which n, p → ∞ and n/p → δo, where δo is a

finite number bounded away from zero. Hence, if we write a constant as c(n), it may be the case that

the constant depends on both n and p, but since p ∼ n/δo, we drop the dependance on p. We use this

simplification for the sake of brevity and clarity of presentation. Since our major theorem involves finite

sample sizes it is straightforward to go beyond this high-dimensional asymptotic setting and obtain more

general results useful for other asymptotic settings.

Assumption 5. The rows of X ∈ Rn×p are independent zero mean Gaussian vectors with covariance Σ.

Let ρmax denote the largest eigenvalue of Σ.

As we mentioned earlier, in our asymptotic setting, we assume that n/p→ δo for some δo bounded away

from zero. Furthermore, we assume that the rows of X are scaled in a way that ρmax = Θ( 1
n) to ensure

that x>i β = Op(1) and β>Σβ = O(1), assuming that each βi is O(1). Under this scaling the signal-to-noise

ratio in each observation remains fixed as n, p grow.4 For more information on this asymptotic setting and

scaling, the reader may refer to [El Karoui, 2018,Donoho and Montanari, 2016,Donoho et al., 2011,Bayati

and Montanari, 2012,Weng et al., 2018,Dobriban and Wager, 2018].

Assumption 6. There exist finite constants c1(n) and c2(n), and qn → 0 all functions of n, such that with

probability at least 1− qn for all i = 1, . . . , n

c1(n) > ‖ ˙̀(β̂)‖∞, (22)

c2(n) > sup
t∈[0,1]

‖῭/i((1− t)β̂/i + tβ̂)− ῭
/i(β̂)‖2

‖β̂/i − β̂‖2
. (23)

c2(n) > sup
t∈[0,1]

‖r̈((1− t)β̂/i + tβ̂)− r̈(β̂)‖2
‖β̂/i − β̂‖2

. (24)

In what follows, for various regularizers and regression methods, by explicitly quantifying constants c1(n)

and c2(n), we discuss conditions (22), (23), and (24) in Assumption 6. We consider the ridge regularizer

in Lemma 1 and the smoothed-`1 (and elastic-net) regularizer in Lemma 2. Concerning various regression

methods, we consider logistic (Lemma 3), robust regression (Lemma 4), least-squares (Lemmas 6 and 7),

and Poisson (Lemmas 8 and 9) regression. The results below show that under mild assumptions, for the

cases mentioned above, c1(n) and c2(n) are polynomial functions of log n, a result that plays a key role in

our main theoretical result presented in Section 4.2.

Lemma 1. For the ridge regularizer r(z) = z2, we have

sup
t∈[0,1]

‖r̈((1− t)β̂/i + tβ̂)− r̈(β̂)‖2
‖β̂/i − β̂‖2

= 0.

4Furthermore, under this scaling of the optimal value of λ will be Op(1) [Mousavi et al., 2018].
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Due to simplicity we skip the proof. As mentioned in Section 2.2, a standard smooth approximation of

the `1-norm is given by

rα(z) =

p∑
i=1

1

α

(
log(1 + eαz) + log(1 + e−αz)

)
.

Lemma 2. For the smoothed-`1 regularizer we have

sup
t∈[0,1]

‖r̈((1− t)β̂/i + tβ̂)− r̈(β̂)‖2
‖β̂/i − β̂‖2

≤ 4α2.

We present the proof of this result in Section A.5.6. Note that as a consequence of Lemma 2, for the

smoothed elastic-net regularizer, defined as r(z) = γz2 + (1− γ)rα(z) for γ ∈ [0, 1], we have

sup
t∈[0,1]

‖r̈((1− t)β̂/i + tβ̂)− r̈(β̂)‖2
‖β̂/i − β̂‖2

≤ 4(1− γ)α2.

Lemma 3. In the generalized linear model family, for the negative logistic regression log-likelihood `(y|x>β) =

−yx>β + log(1 + ex
>β), where y ∈ {0, 1}, we have

sup
t∈[0,1]

‖῭/i((1− t)β̂/i + tβ̂)− ῭
/i(β̂)‖2

‖β̂/i − β̂‖2
≤

√
σmax(X>X),

‖ ˙̀(β)‖∞ ≤ 1.

We present the proof of this result in Section A.5.1. Our next example is about a smooth approximation

of the Huber loss used in robust estimation, known as the pseudo-Huber loss:

fH(z) = γ2
(√

1 + (
z

γ
)2 − 1

)
,

where γ > 0 is a fixed number.

Lemma 4. For the pseudo-Huber loss function `(y|x>β) = fH(y − x>β), we have

sup
t∈[0,1]

‖῭/i((1− t)β̂/i + tβ̂)− ῭
/i(β̂)‖2

‖β̂/i − β̂‖2
≤ 3

γ

√
σmax(X>X),

‖ ˙̀(β)‖∞ ≤ γ.

The proof of this result is presented in Section A.5.4.

Lemma 5. If Assumption 5 holds with ρmax = c/n, and δ0 = n/p, then

Pr

(
σmax(X>X) ≥ c

(
1 + 3

1√
δ0

)2)
≤ e−p.
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The proof of this Lemma presented in Section A. Putting together Lemmas 1, 2, 3, 4 and 5, we conclude

that for ridge/smoothed-`1 regularized robust/logistic regression we have c1(n) = O(1) and c2(n) = O(1).

Lemma 6. For the loss function `(y|x>β) = 1
2(y − x>β)2, we have

sup
t∈[0,1]

‖῭/i((1− t)β̂/i + tβ̂)− ῭
/i(β̂)‖2

‖β̂/i − β̂‖2
= 0,

‖ ˙̀(β̂)‖∞ ≤ ‖y −Xβ̂‖∞.

We skip the proof of this lemma because it is straightforward.

Lemma 7. Assume y ∼ N(Xβ∗, σ2ε I), and `(y|x>β) = 1
2(y − x>β)2. Let Assumption 5 hold with ρmax =

c/n. Finally, let n/p = δ0 and 1
n‖β

∗‖22 = c̃. If r(β) = γβ2 + (1− γ)rα(β), and 0 < γ < 1, then

Pr
(
‖y −Xβ̂‖∞ > ζ̃

√
log n

)
≤ 10

n
+ 2ne−n+1 + ne−p,

where ζ̃ is a constant that only depends on σε, α, c, c̃, λ, δ0 and γ (and is free of n and p).

We present the proof of this result in Section A.5.5. Putting together Lemmas 1, 2, 6, and 7, we

conclude that for smoothed elastic-net regularized least squares regression we have c1(n) = O(
√

log n) and

c2(n) = O(1).

Lemma 8. In the generalized linear model family, for the negative Poisson regression log-likelihood `(y|x>β) =

−f(x>β) + y log f(x>β) − log y! with the conditional mean E[y|x,β] = f(x>β) where f(z) = log(1 + ez)

(known as a soft-rectifying nonlinearity5), we have

sup
t∈[0,1]

‖῭/i((1− t)β̂/i + tβ̂)− ῭
/i(β̂)‖2

‖β̂/i − β̂‖2
≤ (1 + 6‖y‖∞)

√
σmax(X>X)

‖ ˙̀(β)‖∞ ≤ 1 + ‖y‖∞.

We present the proof of this result in Section A.5.2.

Lemma 9. Assume that yi ∼ Poisson
(
f(x>i β

∗)
)

where f(z) = log(1 + ez). Let Assumption 5 hold with

ρmax = c/n. Finally, let n/p = δ0 and β∗>Σβ∗ = c̃. Then, for large enough n, we have

Pr

(
(1 + 6‖y‖∞)

√
σmax(X>X) ≥ ζ1 log3/2 n

)
≤ n1−log logn +

2

n
+ e
−n log( 1

P(Z≤1)
)

+ e−p

Pr
(
‖y‖∞ ≥ 6

√
c̃ log3/2 n

)
≤ n1−log logn +

2

n
+ e
−n log( 1

P(Z≤1)
)

5The “soft-rectifying” nonlinearity f(z) = log(1 + ez) behaves linearly for large z, and decays exponentially on its left tail.
Owing to the convexity and log-concavity of this nonlinearity the log-likelihood is concave [Paninski, 2004], leading to a convex
estimation problem. Since the actual nonlinearity of neural systems is often sub-exponential, the “soft-rectifying” nonlinearity
is popular in analyzing neural data (see [Pillow, 2007, Park et al., 2014, Alison and Pillow, 2017, Zolrowski and Pillow, 2018]
and references therein).
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where Z ∼ N(0, c̃) and ζ1 is a constant that only depends on c, c̃, and δ0 (and is free of n and p).

The proof of this result is presented in Section A.5.3. Putting together Lemmas 1, 2, 8, and 9, we

conclude that for ridge/smoothed elastic-net regularized Poisson regression we have c2(n) = O(log3/2(n))

and c1(n) = O(log3/2(n)).

In summary, in the high-dimensional asymptotic setting, for all the examples we have discussed so far,

c1(n) = O(log3/2(n)) and c2(n) = O(log3/2(n)). Hence, in the results that we will see in the next section we

assume that both c1(n) and c2(n) are polynomial functions of log(n). Finally, we assume that the curvatures

of the optimization problems involved in (1) and (4) have a lower bound:

Assumption 7. There exists a constant ν > 0, and a sequence q̃n → 0 such that for all i = 1, . . . , n

inf
t∈[0,1]

σmin

(
λdiag[r̈(tβ̂ + (1− t)β̂/i)] +X>/i diag[῭/i(tβ̂ + (1− t)β̂/i)]X/i

)
≥ ν (25)

with probability at least 1− q̃n. Here, σmin(A) stands for the smallest singular value of A.

Assumption 7 means that optimization problems (1) and (4) are strongly convex, and strong convexity is

a standard assumption made in the analysis of high dimensional problems, eg. [Van de Geer, 2008,Negahban

et al., 2012]. Moreover, if r(β) = γβ2 + (1− γ)rα(β), and 0 < γ < 1, then ν = 2γ.

Before we mention our main result, we should also mention that Assumptions 7, 5, and 6 can be weakened

at the expense of making our final result look more complicated. For instance, the Gaussianity of the rows

of X can be replaced with the subgaussianity assumption with minor changes in our final result. We expect

our results (or slightly weaker ones) to hold even when the rows of X have heavier tails. However, for the

sake of brevity we do not study such matrices in the current paper. Furthermore, the smoothness of the

second derivatives of the loss function and the regularizer that is assumed in (23) and (24) can be weakened

at the expense of slower convergence in Theorem 3. We will clarify this point in a footnote after (142) in

the proof.

4.2 Main theoretical result

Now based on these results we bound the difference |ALO− LO|. The proof is given in Section A.6.

Theorem 3. Let n/p = δ0 and Assumption 5 hold with ρmax = c/p. Moreover, suppose that Assumptions

6, and 7 are satisfied, and that n is large enough such that qn + q̃n < 0.5. Then with probability at least

1− 4ne−p − 8n
p3
− 8n

(n−1)3 − qn − q̃n the following bound is valid:

max
1≤i≤n

∣∣∣∣∣x>i β̂/i − x>i β̂ −
(

˙̀
i(β̂)

῭
i(β̂)

)(
Hii

1−Hii

)∣∣∣∣∣ ≤ Co√
p
, (26)
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where

Co , (
72c3/2

ν3
)

(
1 +

√
δ0(
√
δ0 + 3)2

c log n

log p

)(
c21(n)c2(n) + c31(n)c22(n)

5(c1/2 + c3/2(
√
δ0 + 3)2)

ν2

)
.(27)

Recall that in Section 4.1 we proved that for many regularized regression problems in the generalized

linear family both c1(n) = O(PolyLog(n)) and c2(n) = O(PolyLog(n)), where the notation PolyLog(n)

denotes a polynomial in log(n). These examples included ridge and smoothed-`1 (and elastic-net) regu-

larizers and logistic, robust, least-squares, and Poisson regression. More specifically, the maximum de-

gree we observed for the logarithm was 3/2, which happened for the Poisson regression. Furthermore,

as mentioned in the last section, in the high-dimensional asymptotic setting in which n, p → ∞ and

n/p → δo, where δo is a finite number bounded away from zero, to keep the signal-to-noise ratio fixed

in each observation (as p and n grow), we considered the scaling that nρmax = O(1). Combining these,

it is straightforward to see that C0(n) = O(c31(n)c22(n)) = O(PolyLog(n)). Therefore, the difference

max1≤i≤n

∣∣∣x>i β̂/i − x>i β̂ − ( ˙̀
i(β̂)
῭
i(β̂)

)(
Hii

1−Hii

)∣∣∣ = Op(
PolyLog(n)√

n
). Theorem 3 proves the accuracy of the ap-

proximation of the leave-one-out estimate of the regression coefficients. As a simple corollary of this result

we can also prove the accuracy of our approximation of LO.

Corollary 1. Suppose that all the assumptions used in Theorem 3 hold. Moreover, suppose that

max
i=1,2,...,n

sup
|bi|<Co√

p

∣∣∣φ̇(yi,x>i β̂/i + bi

)∣∣∣ ≤ c3(n)

with probability rn. Then, with probability at least 1− 4ne−p − 8n
p3
− 8n

(n−1)3 − qn − q̃n − rn

|ALO− LO| ≤ c3(n)Co√
p

, (28)

where Co is the constant defined in Theorem 3.

The proof of this result can be found in Section A.8. As we discussed before, in all the examples we have

seen so far Co√
p is O(PolyLog(n)√

n
). Hence, to obtain the convergence rate of ALO to LO we only need to find

an upper bound for c3(n). Note that usually the loss function ` that is used in the optimization problem is

also used as the function φ to measure the prediction error. Hence, assuming φ(·, ·) = `(·, ·), we study the

value of c3(n) for the examples we discussed in Section 4.1.

1. If φ is the loss function of Lemma 3, then
∣∣∣φ̇ (yi,x>i β)∣∣∣ ≤ 2, leading to c3(n) = 2.

2. If φ is the loss function of Lemma 8, then
∣∣∣φ̇ (yi,x>i β)∣∣∣ ≤ 1 + ‖y‖∞. Furthermore, we proved in

Lemma 9, that under the data generating mechanism described there, with high probability ‖y‖∞ <

6
√
c̃ log3(n), leading to c3(n) = 1 + 6

√
c̃ log3(n).
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3. For the pseudo-Huber loss described in Lemma 4, we have
∣∣∣φ̇ (yi,x>i β)∣∣∣ ≤ γ, leading to c3(n) = γ.

4. For the square loss
∣∣∣φ̇(yi,x>i β̂/i + bi

)∣∣∣ ≤ |yi − x>i β̂/i|+ |bi| ≤ |yi − x>i β̂/i|+ Co√
p . Hence, in order to

obtain a proper upper bound we require more information about the estimate β̂/i. Suppose that our

estimates are obtained from the optimization problem we discussed in Lemma 7. Then, based on (94)

and (97) in the proof of Lemma 7 in Appendix A.5.5

max
i
|yi − x>i β̂/i| ≤ max

i
|yi|+ max

i
|x>i β̂/i| ≤ 2

√
(cc̃+ σ2ε ) log n+

√
10c(cc̃+ σ2ε ) log n

λγ
.

with probability at most 4
n + ne−n+1, leading to c3(n) = 2

√
(cc̃+ σ2ε ) log n+

√
20c(cc̃+σ2

ε ) logn
λγ + Co√

p .

In summary, in the high-dimensional asymptotic setting, for regularized regression methods introduced

in Section 4.1, such as least-squares, logistic, Poisson and robust regression, with r(β) = γβ2 +(1−γ)rα(β),

and 0 < γ < 1, and assuming φ(·, ·) = `(·, ·), we have c3(n) = O(PolyLog(n)), leading to |ALO− LO| =

Op(
PolyLog(n)√

n
). In short, these examples show that ALO offers a consistent estimate of LO.

Finally, note that in the p fixed, n → ∞ regime, Theorem 3 fails to yield |ALO− LO| = op(1). This is

just an artifact of our proof. In Theorem 6, presented in Section A.9 we prove that under mild regularity

conditions, error between ALO and LO is op(1/n) when n → ∞ and p is fixed. For the sake of brevity

details are presented in Section A.9.

5 Numerical Experiments

5.1 Summary

To illustrate the accuracy and computational efficiency of ALO we apply it to synthetic and real data. We

generate synthetic data, and compare ALO and LO for elastic-net linear regression in Section 5.2.1, LASSO

logistic regression in Section 5.2.2, and elastic-net Poisson regression in Section 5.2.3. We should emphasize

that our simulations are performed on a single personal computer, and we have not considered the impact of

parallelization on the performance of ALO and LO. In other words, the simulation results reported for LO

are based on its sequential implementation on a single personal computer. For real data, we apply LASSO,

elastic-net and ridge logistic regression to sonar returns from two undersea targets in Section 5.3.1, and we

apply LASSO Poisson regression to real recordings from spatially sensitive neurons in Section 5.3.2. Our

synthetic and real data examples cover various data shapes where n > p, n = p and n < p.

Figures 4, 5, 6, 7, and the middle-lower panel of Figure 10 reveal that ALO offers a reasonably accurate

estimate of LO for a large range of λ. These figures show that ALO deteriorates for extremely small values

of λ, specially when p > n. This is not a serious issue because the λs minimizing LO and ALO tend to be

far from those small values.
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The real data example in Section 5.3.1, illustrating ALO and LO in Figure 7, is about classifying sonar

returns from two undersea targets using penalized logistic regression. The neuroscience example in Sec-

tion 5.3.2 is about estimating an inhomogeneous spatial point process using an over-complete basis from a

sparsely sampled two-dimensional space. Given the spatial nature of the problem, the design matrix X is

very sparse, which fails to satisfy the dense Gaussian design assumption we made in Theorem 3. Neverthe-

less, the lower middle panel of Figure 10 illustrates the excellent performance of ALO in approximating LO

in an example where p = 10000 and n = 3133.

Figure 2 compares the computational complexity(time) of a single fit, ALO and LO, as we increase

p while we keep the ratio n
p fixed. We consider various data shapes, models, and penalties. Figure 2a

shows time versus p for elastic-net linear regression when n
p = 5. Figure 2b shows time versus p for LASSO

logistic regression when n
p = 1. Figure 2c shows time versus p for elastic-net Poisson regression when n

p = 1
10 .

Finally, the middle-lower panel of Figure 10 shows that for the neuroscience example ALO takes 7 seconds in

comparison to the 60428 seconds required by LO. All these numerical experiments illustrate the significant

computational saving offered by ALO. As it pertains to the reported run times, all fittings in this paper

were performed using a 3.1 GHz Intel Core i7 MacBook Pro with 16 GB of memory. All the codes for the

figures presented in this paper are available here https://github.com/RahnamaRad/ALO.

5.2 Simulations

In all the examples in this section (5.2.1, 5.2.2, 5.2.3 and 5.2.4), we let the true unknown parameter vector

β∗ ∈ Rp to have k = n/10 non-zero coefficients. The k non-zero coefficients are randomly selected, and their

values are independently drawn from a zero mean unit variance Laplace distribution. The rows x>1 , · · · ,x>n

of the design matrix X are independently drawn from N(0,Σ). We consider two correlation structures: 1)

Spiked: cor(Xij , Xij′) = 0.5, and 2) Toeplitz: cor(Xij , Xij′) = 0.9|j
′−j|. Σ is scaled such that the signal

variance var(x>i β
∗) = 1 regardless of the problem dimension. In this section, all the fittings and calculations

of LO (and the one standard error interval of LO) were computed using the glmnet package in R [Friedman

et al., 2010], and ALO was computed using the alocv package in R [He et al., 2018].

5.2.1 Linear regression with elastic-net penalty

We set `(y|x>β) = 1
2(y − x>β)2, r(β) = (1−α)

2 ‖β‖22 + α‖β‖1 and α = 0.5. We let the rows x>1 , · · · ,x>n of

X to have a Spiked covariance and to generate data, we sample y ∼ N(Xβ∗, I). Moreover, φ(y,x>β) =(
y − x>β

)2
so that ALO = 1

n

∑n
i=1

(
yi−x>i β̂
1−Hii

)2

with H = XS

(
X>SXS + λ(1− α)I

)−1
X>S . For various

data shapes, that is n
p ∈ {5, 1, 1

10}, we depict results in Figure 4 where reported times refer to the required

time to fit the model, compute ALO and LO for a sequence of 30 logarithmically spaced tuning parameters

from 1 to 100.
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Figure 4: The ALO and LO mean square error for elastic-net linear regression. The red error bars identify
the one standard error interval of LO.

0.35

0.40

0.45

0.50

0.1 1.0 10.0

λ

LO
ALO

n=1000, p=200 

 LO:148.40(sec) 
 ALO:0.16(sec) 
 FIT:0.14(sec)

(a) n > p

0.36

0.39

0.42

0.45

0.1 1.0 10.0

λ

LO
ALO

n=1000, p=1000 

 LO:960.41(sec) 
 ALO:1.02(sec) 
 FIT:0.89(sec)

(b) n = p

0.40

0.45

0.50

0.1 1.0 10.0

λ

LO
ALO

n=1000, p=10000 

 LO:1525.76(sec) 
 ALO:1.87(sec) 
 FIT:1.46(sec)

(c) n < p

Figure 5: The ALO and LO misclassification errors (as a function of λ) for LASSO logistic regression. The
red error bars identify the one standard error interval of LO.

5.2.2 Logistic regression with LASSO penalty

We set `(y|x>β) = −yx>β + log(1 + ex
>β) (the negative logistic log-likelihood) and r(β) = ‖β‖1.

We let the rows x>1 , · · · ,x>n of X to have a Toeplitz covariance and to generate data, we sample yi ∼

Binomial

(
ex
>
i β
∗

1+e
x>
i
β∗

)
. We take the misclassification rate as our measure of error, and 1{x>β>0} as predic-

tion, where 1{·} is the indicator function, so that

ALO =
1

n

n∑
i=1

∣∣∣∣∣yi − 1
{x>i β̂+

˙̀
i(β̂)
῭
i(β̂)

Hii
1−Hii

>0}

∣∣∣∣∣
whereH = XS

(
X>S diag[῭(β̂)]XS

)−1
X>S diag[῭(β̂)], ˙̀

i(β̂) =
(

1 + e−x
>
i β̂
)−1
−yi and ῭

i(β̂) = ex
>
i β̂
(

1 + ex
>
i β̂
)−2

.

For various data shapes, that is n
p ∈ {5, 1, 1

10}, we depict results in Figure 5 where reported times refer

to the required time to fit the model, compute ALO and LO for a sequence of 30 logarithmically spaced

tuning parameters from 0.1 to 10.

5.2.3 Poisson regression with elastic-net penalty

We set `(y|x>β) = eyx
>β − yx>β (the negative Poisson log-likelihood), r(β) = (1−α)

2 ‖β‖22 + α‖β‖1 and

α = 0.5. We let the rows x>1 , · · · ,x>n of X to have a Spiked covariance and to generate data, we sample
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Figure 6: The ALO and LO mean absolute errors (as a function of λ) for elastic-net Poisson regression.
The red error bars identify the one standard error interval of LO.

yi ∼ Poisson
(
ex
>
i β

∗
)

. We use the mean absolute error as our measure of error, and ex
>β as prediction, so

that

ALO =
1

n

n∑
i=1

∣∣yi − ex>i β̂+ ˙̀
i(β̂)
῭
i(β̂)

Hii
1−Hii

∣∣
where H = XS

(
X>S diag[῭(β̂)]XS + λ(1− α)I

)−1
X>S diag[῭(β̂)], ˙̀

i(β̂) = ex
>
i β̂ − yi, and ῭

i(β̂) = ex
>
i β̂.

For various data shapes, that is n
p ∈ {5, 1, 1

10}, we depict results in Figure 6 where reported times refer

to the required time to fit the model, compute ALO and LO for a sequence of 30 logarithmically spaced

tuning parameters from 1 to 100.

5.2.4 Timing simulations

To compare the timing of ALO with that of LO, we consider the following scenarios:

• Elastic-net linear regression, with rows of the design matrix having a Spiked covariance, data generated

as described in Sections 5.2 and 5.2.1, and considered for a sequence of 10 logarithmically spaced tuning

parameters from 1 to 100. We let n
p = 5.

• LASSO logistic regression, with rows of the design matrix having a Toeplitz covariance, data generated

as described in Sections 5.2 and 5.2.2, and considered for a sequence of 10 logarithmically spaced tuning

parameters from 0.1 to 10. We let n
p = 1.

• Elastic-net Poisson regression, with rows of the design matrix having a Spiked covariance, data gener-

ated as described in Sections 5.2 and 5.2.3, and considered for a sequence of 10 logarithmically spaced

tuning parameters from 1 to 100. We let n
p = 1

10 .

The timings of a single fit, ALO and LO versus model complexity p are illustrated in Figure 2. The reported

timings are obtained by recording the time required to find a single fit and LO using the glmnet package

in R [Friedman et al., 2010], and to find ALO using the alocv package in R [He et al., 2018], all along the

tuning parameters above. This process is repeated 5 times to obtain the average timing.
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Figure 7: The ALO and LO deviances (as a function of λ) for penalized logistic regression applied to the
sonar data (Section 5.3.1) where n = 208 and p = 60. The red error bars identify the one standard error
interval of LO.

5.3 Real Data

5.3.1 Sonar data

Here we use ridge, elastic-net and LASSO logistic regression to classify sonar returns collected from a metal

cylinder and a cylindrically shaped rock positioned on a sandy ocean floor. The data consists of a set of

n = 208 returns, 111 cylinder returns and 97 rock returns, and p = 60 spectral features extracted from

the returning signals [Gorman and Sejnowski, 1988]. We use the misclassification rate as our measure of

error. Numerical results comparing ALO and LO for ridge, elastic-net and LASSO logistic regression are

depicted in Figure 7. The single fit and LO (and the one standard error interval of LO) were computed

using the glmnet package in R [Friedman et al., 2010], and ALO was computed using the alocv package

in R [He et al., 2018]. The values of the tuning parameters are a sequence of 30 logarithmically spaced

tuning parameters between two value automatically selected by the glmnet package.

5.3.2 Spatial point process smoothing of grid cells: a neuroscience application

In this section, we compare ALO with LO on a real dataset. This dataset includes electrical recordings of

single neurons in the entorhinal cortex, an area in the brain found to be particularly responsible for the

navigation and perception of space in mammals [Moser et al., 2008]. The entorhinal cortex is also one of

the areas pathologically affected in the early stages of Alzheimer’s disease, causing symptoms of spatial

disorientation [Khan et al., 2014]. Moreover, the entorhinal cortex provides input to another area, the

Hippocampus, which is involved in the cognition of space and the formation of episodic memory [Buzsaki

and Moser, 2013].

Electrical recordings of single neurons in the medial domain of the entorhinal cortex (MEC) of freely

moving rodents have revealed spatially modulated neurons, called grid cells, firing action potentials only
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Figure 8: Left: Spike locations (black) are superimposed on the animal’s trajectory(grey). Firing fields
are areas covered by a cluster of action potentials. Right: The firing fields of a grid cell form a periodic
triangular matrix tiling the entire environment available to the animal. Figure is adapted from [Moser et al.,
2014].

around the vertices of two dimensional hexagonal lattices covering the environment in which the animal

navigates. The hexagonal firing pattern of a single grid cell is illustrated in the left panel of Figure 8. These

grid cells can be categorized according to the orientation of their triangular grid, the wavelength (distance

between the vertices ), and the phase (shift of the whole lattice). See the right panel of Figure 8 for an

illustration of the orientation and wavelength of a single grid cell.

The data we analyze here consists of extra cellular recordings of several grid cells, and the simultaneously

recorded location of the rat within a 300cm × 300cm box for roughly 20 minutes6. Since the number of

spikes fired by a grid cell depends mainly on the location of the animal, regardless of the animal’s speed

and running direction [Hafting et al., 2005], it is reasonable to summarize this spatial dependency in terms

of a rate map η(r), where η(r)dt is the expected number of spikes emitted by the grid cell in a fixed time

interval dt, given that the animal is located at position r during this time interval [Rahnama Rad and

Paninski, 2010, Pnevmatikakis et al., 2014, Dunn et al., 2015]. In other words, if the rat passes the same

location again, we again expect the grid cell to fire at more or less the same rate7, specifically according

to a Poisson distribution with mean η(r)dt. For each grid cell, the estimation of the rate map η(r) is a

first step toward understanding the cortical circuitry underlying spatial cognition [Rowland et al., 2016].

Consequently, the estimation of firing fields without contamination from measurement noise or bias from

overs-smoothing will help to clarify important questions about neuronal algorithms underlying navigation

in real and mental spaces [Buzsaki and Moser, 2013].

To be concrete, we discretize the two dimensional space into an m×m grid, and discretize time into bins

with width dt. In this example, dt is 0.4 seconds and m is 50. The experiment is 1252.9 seconds long, and

therefore we have
⌈
1252.9
0.4

⌉
= 3133 time bins. In other words, n = 3133. We use yi ∈ {0, 1, 2, 3, · · · } to denote

the number of action potentials observed in time interval [(i− 1)dt, idt), where i = 1, · · · , n. Moreover, we

6The source of the data is [Stensola et al., 2012]. For a video of a single grid cell recorded in the MEC see the clip
https://www.youtube.com/watch?v=i9GiLBXWAHI.

7It is known that these rate maps can in some cases change with time but in most cases it is reasonable to assume them to
be constant. Moreover, the two dimensional surface represented by η(r) is not the same for different grid cells.
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Figure 9: The four truncated Gaussian bumps

use ri ∈ Rm2
to denote a vector composed of zeros except for a single +1 at the entry corresponding to the

animal’s location within the m ×m grid during the time interval [(i − 1)dt, idt). We assume a log-linear

model log η(r) = r>z, relating the firing rate at location r ∈ Rm2
to the latent vector z where the m×m

latent spatial process responsible for the observed spiking activity is unraveled into z ∈ Rm2
. The firing rate

can be written as η(ri) = exp
(
r>i z

)
. Due to this notation, r>i z is the value of z at the animal’s location

during the time interval [(i − 1)dt, idt). In this vein, the distribution of observed spiking activity can be

written as

p(yi|ri) =
e−η(ri)η(ri)

yi

yi!
. (29)

As mentioned earlier, the main goal is to estimate the two dimensional rate map η(·), and a large body

of work has addressed the problem of estimating a smooth rate map from neural data [DiMatteo et al.,

2001, Gao et al., 2002, Kass et al., 2005, Cunningham et al., 2008, Czanner et al., 2008, Cunningham et al.,

2009,Paninski et al., 2010,Rahnama Rad and Paninski, 2010,Macke et al., 2011,Pnevmatikakis et al., 2014].

Here we employ an over-complete basis to account for the spatially localized sensitivity of grid cells. Since it

is known that the rate map of any single grid cell consists of bumps of elevated firing rates, located at various

points in the two dimensional space, as illustrated in the left panel of Figure 8, it is reasonable to represent

z as a linear combination of {ψ1, . . . ,ψp}, an over-complete basis in Rp [Brown et al., 2001,Pnevmatikakis

et al., 2014,Dunn et al., 2015]. We compose the over-complete basis using truncated Gaussian bumps with

various scales, distributed at all pixels. The four basic Gaussian bumps we use are depicted in Figure 9. Since

we use four truncated Gaussian bumps for each pixel, in this example, we have a total of p = 4m2 = 10000

basis functions. We employ the truncated Gaussian bumps e−
1

2σ2
(u2x+u

2
y)1{

exp
(
− 1

2σ2
(u2x+u

2
y)
)
>0.05

} where ux

and uy are the horizontal and vertical coordinates. Define Ψ ∈ Rm2×p as a matrix composed of columns

{ψ1, . . . ,ψp}. Furthermore, define x̃i ∈ Rp as x̃i , Ψ>ri, and define X̃ ∈ Rn×p as a matrix composed

of rows {x̃>1 , . . . , x̃>n}. We normalize the columns of X̃, calling the resulting matrix X. The columns of

X ∈ Rn×p are unit normed. Formally, X = X̃Γ−1 where Γ ∈ Rp×p is a diagonal matrix filled with the

column-norms of X̃. We use {x>1 , . . . ,x>n} to refer to the rows of X, yielding η(ri) = exp
(
x>i β

)
. Note

that due to the above mentioned rescaling, we have the following relationship between the latent map z

and β: z = ΨΓβ. Sparsity of β refers to our prior understanding that the rate map of a grid cells consists
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Figure 10: Top left: Spike locations (red) are superimposed on the animal’s trajectory(black). Firing fields
are areas covered by a cluster of action potentials. The firing fields of a grid cell form a periodic triangular
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of bumps of elevated firing rates, located at various points in the two dimensional space, and therefore, our

estimation problem is as follows:

β̂ , arg min
β∈Rp

{ n∑
i=1

[η(ri)− yi log η(ri)] + λ‖β‖1
}
,

= arg min
β∈Rp

{ n∑
i=1

[
exp(x>i β)− yix>i β

]
+ λ‖β‖1

}
.

Here we use the negative log-likelihood in equation (29) as the cost function, that is, φ(y,x>β) = yx>β −

exp(x>β) + log y!. We remind the reader that we will use ALO formula that was obtained in Theorem 1.

Figures 10 illustrate that ALO is reasonable approximation of LO, allowing computationally efficient tuning

of λ. To see the effect of λ of the rate map, we also present the maps resulting from small and large values

of λ, leading to under and over smooth rate maps, respectively. As it pertains to the reported run times,

all fittings in this section were performed using the glmnet package [Qian et al., 2013] in MATLAB.

6 Concluding Remarks

Leave-one-out cross validation (LO) is an intuitive and conceptually simple risk estimation technique. De-

spite its low bias in estimating the extra-sample prediction error, the high computational complexity of LO

has limited its applications for high-dimensional problems. In this paper, by combining a single step of the

Newton method with low-rank matrix identities, we obtained an approximate formula for LO, called ALO.

We showed how ALO can be applied to popular non-differentiable regularizers, such as LASSO. With the
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aid of theoretical results and numerical experiments, we showed that ALO offers a computationally efficient

and statistically accurate estimate of the extra-sample prediction error in high-dimensions.

Important directions for future work involve various approximations that further reduce the compu-

tational complexity. The computational bottleneck of ALO is the inversion of the large generalized hat

matrix H. This can make the application of ALO to ultra high dimensional problems computationally

challenging. Since the diagonals of our H matrix can be represented as leverage scores of an augmented

X matrix, scalable methods to approximately compute the leverage score may offer a promising avenue for

future work. For example [Drineas et al., 2012] offers a randomized method to estimate the leverage scores.

However, the randomized algorithm presented in [Drineas et al., 2012] applies to the p � n case, making

it challenging to apply these methods to high-dimensional settings where p is also very large. Nevertheless

this is certainly a promising direction for speeding up ALO.

In another line of work, the generalized cross-validation approach [Craven and Wahba, 1979, Golub

et al., 1979] approximates the diagonal elements of H with tr(H)/n. Computationally efficient randomized

estimates of tr(H) can be produced without having any explicit calculations of this matrix [Deshpande and

Girard, 1991, Wahba et al., 1995, Girard, 1998, Lin et al., 2000]. The theoretical study of the additional

errors introduced by these randomized approximations, and the scalable implementations of them is another

promising avenue for future work.
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A Proofs (FOR ON-LINE PUBLICATION ONLY)

A.1 Several concentration results for Gaussian random vectors and matrices

In this section, we mention a few concentration results that will be used multiple times in the proofs of our main

results. We standard and well-known Gaussian tail bound:

Lemma 10. Let Z ∼ N(0, 1). Further assume that t > 1. Then,

P (Z > t) ≤ 1√
2π

e−
t2

2 .

Our next lemma obtains a tail bound for the magnitude of a Gaussian random vector and the maximum eigenvalue

of a Gaussian matrix.

Lemma 11 (Due to [Boucheron et al., 2013]). Let x ∼ N(0,Σ) with ρmax , σmax (Σ), where Σ ∈ Rp×p then

Pr
[
‖x‖22 > 5pρmax

]
≤ e−p. (30)

Furthermore, if X ∈ Rn×p is composed of independently distributed N(0, 1
n ) entries, then

Pr

[√
σmax (X>X) ≥ 1 +

√
p

n
+ t

]
≤ e−

nt2

2 . (31)

The above lemma shows how we can find a tail bound for the maximum singular value of an iid Gaussian matrix.

Below we extend the result to Gaussian matrices whose columns are dependent on each other. Note that Lemma 12

is the same as Lemma 5 with nρmax = c and
√

p
n = 1√

δ0
. Hence we present the proof Lemma 12 which can be easily

used to prove Lemma 5.

Lemma 12. X ∈ Rn×p is composed of independently distributed N(0,Σ) rows, with ρmax , σmax (Σ), where Σ ∈ Rp×p

then

Pr
[
σmax

(
XX>

)
≥
(√
n+ 3

√
p
)2
ρmax

]
≤ e−p. (32)

Proof. Since X ∈ Rn×p is composed of independently distributed N(0,Σ) rows, then

Pr
[
σmax

(
XX>

)
≥ σ0

]
= Pr

[
σmax

(
X>X

)
≥ σ0

]
= Pr

[
max
‖u‖22≤1

‖Xu‖22 ≥ σ0

]
= Pr

[
max
‖u‖22≤1

∥∥∥ZΣ1/2u
∥∥∥2

2
≥ σ0

]
= Pr

[
max

‖Σ−1/2u‖22≤1
‖Zu‖22 ≥ σ0

]
≤ Pr

[
max

‖ u√
ρmax

‖22≤1
‖Zu‖22 ≥ σ0

]

= Pr

[
max
‖u‖22≤1

‖Zu‖22 ≥
σ0

ρmax

]
= Pr

[√
σmax

(
Z>Z

n

)
≥
√

σ0

nρmax

]
, (33)

where Z ∈ Rn×p is composed of independently distributed N(0, 1) entries. As a consequence of Lemma 11, and letting
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σ0 = nρmax

(
1 +

√
p
n + t

)2
, we get

Pr

[
σmax

(
XX>

)
≥ nρmax

(
1 +

√
p

n
+ t

)2
]
≤ e−nt

2/2. (34)

By substituting t =
√

2p
n in (34), and noting that 3 > 1 +

√
2, we get

Pr

[
σmax

(
XX>

)
≥ nρmax

(
1 + 3

√
p

n

)2
]
≤ e−p.

A.2 Proof of Theorem 1

A.2.1 Roadmap of the proof

We first remind the reader that rα(z) , 1
α (log(1 + e−αz) + log(1 + eαz)). Before we discuss the proof, let us mention

the following definitions:

hα(β) ,
n∑
i=1

`(yi|x>i β) + λ

p∑
i=1

rα(βi), h(β) ,
n∑
i=1

`(yi|x>i β) + λ

p∑
i=1

|βi|, (35)

β̂α , arg min
β
hα(β), β̂ , arg min

β
h(β). (36)

Note that according to Assumptions 1 and 2, β̂α and β̂ are unique. We first mention a few structural properties

of rα(z) that will be used throughout our proof. Since the proofs of these results are straightforward, we skip them.

Lemma 13. For any α > 0 we have rα(z) ≥ |z|, and

sup
z
|rα(z)− |z|| ≤ 2 log 2

α
.

In particular, as α→∞, rα(z) uniformly converges to |z|.

Lemma 14. rα(z) is infinitely many times differentiable, and

ṙα(z) =
eαz − e−αz

eαz + e−αz + 2

r̈α(z) =
2α

(eαz + e−αz + 2)
. (37)

Furthermore, if |zα| < ζ1
α for a constant ζ1 > 0, then limα→∞ r̈α(zα) = +∞. Finally, if |zα| > ζ2 for a constant

ζ2 > 0, then limα→∞ r̈α(zα) = 0 and limα→∞ ṙα(zα) = 1.

Now, we show the main steps for finding the following limit

lim
α→∞

Hα , lim
α→∞

X
(
λ diag[r̈α(β̂α)] +X> diag[῭(β̂α)]X

)−1

X> diag[῭(β̂α)].
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In that vein, let

A , X>Scdiag[῭(β̂α)]XSc + diag[r̈αSc(β̂
α)], B ,X>Scdiag[῭(β̂α)]XS ,

C , X>S diag[῭(β̂α)]XS + diag[r̈αS(β̂α)], D , (C −B>A−1B)−1, (38)

where S = {i : |β̂i| 6= 0}. Based on Theorem 4 in Section A.2.3, for large enough α, there exist fixed numbers ζ1, ζ2 > 0

such that

max
i∈Sc
|β̂αi | <

ζ1
α
, and min

i∈S
|β̂αi | > ζ2,

which with Lemma 14 implies r̈α(β̂αi ) → ∞ for i ∈ Sc and r̈α(β̂αi ) → 0 for i ∈ S, as α → ∞. Since the diagonal

elements of diag[r̈αSc(β̂
α)] go off to infinity, A−1 → 0, as α → ∞. Furthermore, since the diagonal elements of

diag[r̈αS(β̂α)] converge to zero, limα→∞D = (X>S diag[῭(β̂α)]XS)−1. Therefore, by using the following identity

 A B

B> C

−1

=

A−1 +A−1BDB>A−1 −A−1BD

−DB>A−1 D

 , (39)

and noting that limα→∞A
−1 +A−1BDB>A−1 = 0, limα→∞−A−1BD = 0, we obtain

lim
α→∞

Hα = lim
α→∞

X
(
λ diag[r̈(β̂α)] +X> diag[῭(β̂α)]X

)−1

X> diag[῭(β̂α)]

= XS

(
X>S diag[῭(β̂)]XS

)−1

X>S diag[῭(β̂)].

Note that in Lemma 15 in Section A.2.2 we prove that ‖β̂α − β̂‖2 → 0 as α→∞. Hence, from the continuity of

the second derivative of ` (Assumption 3) we have ῭(β̂α)→ ῭(β̂) as α→∞.

A.2.2 Proof of ‖β̂α − β̂‖2 → 0

Lemma 15. If Assumptions 1 and 2 hold, i.e. uniqueness of β̂ and β̂α, then limα→∞ ‖β̂α − β̂‖2 = 0.

Proof. First note that according to Lemma 13, we have

|h(β)− hα(β)| ≤ 2p log 2

α
.

Hence, we have

hα(β̂α) ≥ h(β̂α)− 2p log 2

α
≥ h(β̂)− 2p log 2

α
, (40)

and

hα(β̂) ≤ h(β̂) +
2p log 2

α
. (41)

Suppose that ‖β̂α − β̂‖2 does not go to zero as α → ∞. Then, there exists an ε > 0 for which we can find a

sequence α1, α2, . . . , such that

‖β̂αi − β̂‖2 > ε. (42)
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According to Lemma 13, we have

λ‖β̂αi‖1
(a)

≤ λ

p∑
j=1

rαi(β̂
αi
j )

(b)

≤ hαi(β̂
αi)

(c)

≤ hαi(0)=

n∑
j=1

`(yj |0) +
2p log 2

αi
. (43)

Note that Inequality (a) uses Lemma 13 which proves |β̂αij | ≤ rαi(β̂
αi
j ). Inequality (b) is due to the fact that

hα(β) =
∑n
i=1 `(yi|x>i β) +

∑p
i=1 rα(βi) and we assume that the loss function returns positive numbers. Inequality

(c) is due to the fact that β̂αi is the minimizer of hαi(β).

According to (43) the sequence β̂α1 , β̂α2 , . . . belongs to a compact set, and hence has a converging subsequence,

called β̂α̃1 , β̂α̃2 , . . .. Suppose that β̂α̃1 , β̂α̃2 , . . . converges to β̃. Therefore,

h(β̂α̃j )
(d)

≤ hα̃j (β̂
α̃j ) +

2p log 2

α̃j

(e)

≤ hα̃j (β̂) +
2p log 2

α̃j

(f)

≤ h(β̂) +
4p log 2

α̃j
. (44)

Inequality (d) is due to (40). Inequality (e) is true because β̂α̃j is the minimizer of hα̃j (β), and finally Inequality (f)

is due to (41). By taking the limit j →∞ from both sides of (44), we have

h(β̃) ≤ h(β̂).

But β̃ is different from β̂, according to (42), contradicting the uniqueness of β̂ in Assumption 1. �.

A.2.3 Bounds for regression coefficients in smoothed LASSO

Theorem 4. Let S denote the active set of β̂, i.e., the location of its non-zero coefficients. Under assumptions 1, 2,

3, and 4, there exists a fixed numbers ζ1, ζ2 > 0, such that for α large enough, we have

max
i∈Sc
|β̂αi | <

ζ1
α

min
i∈S
|β̂αi | > ζ2.

Proof. The optimality conditions

n∑
i=1

xi ˙̀(yi|x>i β̂α) + λṙα(β̂α) = 0, (45)

n∑
i=1

xi ˙̀(yi|x>i β̂α) + λĝ = 0, (46)

lead to

∥∥∥λṙα(β̂α)− λĝ
∥∥∥

2
=

∥∥∥∥∥−
n∑
i=1

xi ˙̀(yi|x>i β̂α) +

n∑
i=1

xi ˙̀(yi|x>i β̂)

∥∥∥∥∥
2

. (47)

We know ‖β̂α − β̂‖2 → 0 from Lemma 15. And since ` is twice differentiable (Assumption 3), we can argue that

‖ −
∑
xi ˙̀(yi|x>i β̂α) +

∑
xi ˙̀(yi|x>i β̂)‖2 → 0 as α→∞. Hence,

‖λṙα(β̂α)− λĝ‖∞ ≤ ‖λṙα(β̂α)− λĝ‖2 → 0, (48)
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as α→∞. This shows that for every i ∈ Sc, |αβ̂αi | should remain bounded as α→∞. Suppose that this is not true.

Then we find a subsequence that αj β̂
αj
i →∞ as j →∞. Then

lim
j→∞

ṙαj (β̂
αj
i ) = lim

j→∞

eαj β̂
αj
i − e−αj β̂

αj
i

eαj β̂
αj
i + e−αj β̂

αj
i + 2

= 1.

If we combine this with Assumption 4, we conclude that ‖λṙα(β̂α)− λĝ‖∞ will be a constant due to the assumption

supi∈Sc |ĝi| < 1. This is in contradiction with (48). Hence, we have proved that for every i ∈ Sc, |αβ̂αi | remains

bounded.

Next, we show that mini∈S |β̂αi | is bounded away from zero in the limit α → ∞. Define mini∈S |β̂i| = γ > 0.

Lemma 15 implies maxi∈S |β̂αi − β̂i| → 0, and therefore, for α large enough, we have

max
i∈S
|β̂αi − β̂i| < γ/2,

leading to

min
i∈S
|β̂αi | > min

i∈S
|β̂i| −max

i∈S
|β̂αi − β̂i| > ζ2 , γ/2.

�

A.3 Proof of Theorem 2

The following lemma plays a critical role in our proof of Theorem 2.

Lemma 16. Consider a class of symmetric positive definite matrices of the form

Γδ ,

a+ δ b>

b C

 , (49)

where a > 0, δ ≥ 0 and C ∈ Rn−1×n−1. Then, for any vector v ∈ Rn we have

lim
δ→∞

v>Γ−1
δ v ≤ v

>Γ−1
δ v ≤ v

>Γ−1
0 v.

Furthermore, if we define v/1 , (v2, v3, . . . , vn)>, then limδ→∞ v
>Γ−1

δ v = v>/1C
−1v/1.

Proof: Define κ , a+ δ − b>C−1b. Note that since the matrix Γδ is always positive definite, for any value of δ,

κ > 0. By using the formulas for the inverse of block matrices we have

Γ−1
δ =

 1
κ −b

>C−1

k

−C
−1b
κ

C−1bb>C−1

κ +C−1

 . (50)

Define v/1 , (v2, v3, . . . , vn)>.

v>Γ−1
δ v =

v2
1

κ
+ v>/1C

−1v/1 +
v>/1C

−1bb>C−1v/1

κ
− 2

v>/1C
−1bv1

κ

= v>/1C
−1v/1 +

1

κ
(v1 − b>C−1v/1)2. (51)
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Lemma 16 follows from the monotonicity of v>Γ−1
δ v in terms of κ. �

Proof of Theorem 2. Before we start the proof, let us emphasize on the following facts that will be used later in the

proof.

1. Consider an index i ∈ (S ∪ T )c. We know that β̂i = 0 and the subgradient |ĝi| < 1. Hence, according to the

proof of Theorem 4 we have αβ̂αi < ζ. Therefore, according to Lemma 14 we have r̈(β̂αi )→∞ as α→∞.

2. Consider i ∈ S. Then by definition β̂i 6= 0. Similar to the proof of Theorem 1, we have r̈(β̂αi )→ 0 as α→∞.

Hence, we already know the limiting behavior of r̈(β̂αi ) for i ∈ S and i ∈ (S ∪ T )c as α → ∞. The only remaining

index set is T . Unfortunately, for i ∈ T we can not specify the limiting behavior of r̈(β̂αi ). Hence, our goal is to use

Lemma 16 to get around this issue. Set U , (S ∪ T )c and define the matrices

Ãα , X>S diag[῭(β̂α)]XS + diag[r̈αS(β̂α)], B̃α ,X>T diag[῭(β̂α)]XT ,

C̃α , X>U diag[῭(β̂α)]XU + diag[r̈αU (β̂α)], D̃α ,X>S diag[῭(β̂α)]XT ,

Ẽα , X>S diag[῭(β̂α)]XU , F̃ α ,X>T diag[῭(β̂α)]XU . (52)

Given this notation we have

Hα
ii = x>i


Ãα D̃α Ẽα

(D̃α)
>

B̃α + diag[r̈αT (β̂α)] F̃ α

(Ẽα)> (F̃ α)> C̃α


−1

xi ῭i(β̂
α). (53)

Here each element of diag[r̈αT (β̂α)] may converge to any number in the range [0,∞]. Hence we use Lemma 16 to find

upper and lower bounds for Hα
ii . According to Lemma 16 we have

Hα
ii ≤ x>i


Ãα D̃α Ẽα

(D̃α)
>

B̃α F̃ α

(Ẽα)> (F̃ α)> C̃α


−1

xi ῭i(β̂
α), (54)

and

Hα
ii ≥ lim

δ|T |→∞
. . . lim

δ1→∞
x>i


Ãα D̃α Ẽα

(D̃α)
>

B̃α + diag[δ1, δ2, . . . , δ|T |] F̃ α

(Ẽα)> (F̃ α)> C̃α


−1

xi ῭i(β̂
α)

= x>i,,S∪U

 Ãα Ẽα

(Ẽα)> C̃α

−1

xi,S∪U ῭
i(β̂

α). (55)

The rest of the proof is similar to the proof of Theorem 1; we take the limit α→∞ from both sides of (54) and (55),

and then use the block matrix inversion formulas (similar to those used in the proof of Theorem 1) and the fact that

(Ãα)−1 → 0 as α→∞ to complete the proof.
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A.4 Derivation of (18)

A.4.1 Roadmap of the derivations

The goal of this section is to derive the ALO formula, presented in (18), for the following class of bridge estimators:

β̂ , arg min
β∈Rp

{ n∑
i=1

`(yi|x>i β) + λ‖β‖qq
}
, (56)

where q ∈ (1, 2). Since ‖β‖qq is not twice differentiable at zero, similar to what we did for LASSO, we first consider a

smoothed version of the bridge regularizer:

rqγ(z) =
1

γ

∫
|u|qψ((z − u)/γ)du, (57)

where ψ satisfies the following conditions:

(i) ψ has a compact support, i.e., supp(ψ) = [−1, 1]. Also, ψ(w) ≥ 0 for every w.

(ii)
∫
ψ(w)dw = 1 and ψ(0) > 0;

(iii) ψ is infinitely many times smooth and symmetric around 0 on R;

The two important properties of rqγ(z) are

1. rqγ(z) is infinitely many times differentiable for any nonzero value of γ.

2. |rqγ(z)− |z|q| → 0 as γ → 0. This claim will be proved in Lemma 17 below.

Hence, instead of finding the ALO formula directly for (56), we start with

β̂γ , arg min
β

n∑
i=1

`(yi|x>i β) + λ

p∑
i=1

rqγ(βi). (58)

Given that both the loss function and the regularizer are smooth in (58), we can use (6) to obtain the following

formula as the estimate of the out-of-sample prediction error of β̂γ :

ALOγ ,
1

n

n∑
i=1

φ

(
yi,x

>
i β̂

γ +

(
˙̀
i(β̂

γ)
῭
i(β̂γ)

)(
Hγ
ii

1−Hγ
ii

))
, (59)

where

Hγ , X
(
λ diag[r̈qγ(β̂γ)] +X> diag[῭(β̂γ)]X

)−1

X> diag[῭(β̂γ)]. (60)

Note that we are interested in ALOγ for large values of γ. Hence, as suggested for the LASSO problem in Section

2.2, we calculate limγ→0 ALOγ . In Section A.4.3 we prove the following theorem:

Theorem 5. If the loss function is twice continuously differentiable with respect to its second argument, and the

optimization problem in (58) has a unique solution for every γ, then

lim
γ→0

ALOγ ,
1

n

n∑
i=1

φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)

῭
i(β̂)

)(
Hii

1−Hii

))
, (61)
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where

H ,XS

(
X>S diag[῭(β̂)]XS + λ diag[r̈qS(β̂)]

)−1

X>S diag[῭(β̂)], (62)

S is the active set of β̂, and r̈q(u) = q(q − 1)|u|q−2.

Proof of this Theorem is presented in Section A.4.3. We will first prove in Lemma 19 that

‖β̂γ − β̂‖2 → 0.

Since, ‖β̂γ − β̂‖2 → 0, and ˙̀ and ῭ functions are continuous, it is straightforward to prove that as γ → 0

˙̀
i(β̂

γ)→ ˙̀
i(β̂), ῭

i(β̂
γ)→ ῭

i(β̂).

Hence, the final remaining challenge in proving Theorem 5 is to calculate limγ→0H
γ
ii. In Section A.4.3 we prove that

lim
γ→0

Hγ = XS

(
X>S diag[῭(β̂)]XS + λ diag[r̈qS(β̂)

)−1

X>S diag[῭(β̂)].

A.4.2 Basic properties of rqγ(·)

Lemma 17. The smoothed regularizer rqγ(·) satisfies

sup
|z|<M

|rqγ(z)− |z|q| ≤ q(M + γ)q−1γ.

Proof. According to the symmetry, we only consider z ≥ 0. We have

|rqγ(z)− |z|q| =
1

γ

∣∣∣∣∫ γ

−γ
(|z − u|q − |z|q)ψ

(
u

γ

)
du

∣∣∣∣
(a)

≤ (z + γ)q − zq (b)
= qz̃q−1γ ≤ q(M + γ)q−1γ. (63)

Note that inequality (a) is due to the fact that since z > 0, the difference between |z − u|q − |z|q is maximized when

u = −γ. In other words,

||z − u|q − |z|q| ≤ (z + γ)q − zq, ∀u ∈ [−γ, γ].

Furthermore, equality (b) is a result of the mean value theorem and z̃ ∈ (z, z + γ).

A.4.3 Proof of Theorem 5

Consider the following definitions:

hqγ(β) ,
n∑
i=1

`(yi|x>i β) + λ

p∑
i=1

rqγ(βi), hq(β) ,
n∑
i=1

`(yi|x>i β) + λ

p∑
i=1

|βi|q, (64)

As discussed in Lemma 17, the difference |rqγ(z)− |z|q| is bounded by the maximum value that z takes. Our first

lemma shows that supγ∈(0,1] ‖β̂γ‖∞ < M . Hence, according to Lemma 17 the discrepancy between |rqγ(β̂γi ) − |β̂γi |q|

goes to zero as γ → 0.
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Lemma 18. There exists an M <∞ such that supγ∈[0,1] ‖β̂γ‖∞ < M and ‖β̂‖∞ < M .

Here we only present the sketch of the proof, and skip the straightforward details. If ‖β̂γ‖∞ →∞, then hqγ(β̂γ)→

∞. Hence, since hqγ(0) is bounded, ‖β̂γ‖∞ cannot go off to infinity. We can now use this lemma to prove that as

γ → 0, ‖β̂γ − β̂‖2 → 0.

Lemma 19. If the optimization problems in (64) have unique solutions, then as γ → 0

‖β̂γ − β̂‖2 → 0.

The proof of this lemma is similar to the proof of Lemma 15, and is hence skipped here. As mentioned in Section

A.4.1, the main step in proving Theorem 5 is to find the limit of limγ→0Hγ . The main step in this calculation is to

calculate limγ→0 r̈(β̂γ). The following lemma shows how this limit can be calculated.

Lemma 20. Let zγ denote a function of γ. If zγ → 0 as γ → 0, then

lim
γ→0

r̈qγ(zγ) =∞.

Proof. Without loss of generality we consider the case zγ ≥ 0. We consider three different cases. Each case has a

slightly different proof strategy.

1. Case I:
zγ
γ →∞ or

zγ
γ → c ≥ 1.

2. Case II:
zγ
γ → c, where c ∈ (0, 1).

3. Case III:
zγ
γ → 0.

It is straightforward to show that

r̈qγ(zγ) =

∫ ∞
−∞

q|zγ − u|q−1sign(zγ − u)
1

γ2
ψ̇

(
u

γ

)
du. (65)

Note that ψ̇
(
u
γ

)
= 0 for u outside the interval [−γ, γ]. Now we consider the three cases we described above.

Case I: We assume that for large enough values of γ, zγ > γ. Clearly, this holds when zγ/γ → c > 1. However, it

may be violated when
zγ
γ → 1. But, this special case can be handled with a similar approach and is hence skipped.

We have

|r̈qγ(zγ)| = |
∫ 0

−γ
q(zγ − u)q−1 1

γ2
ψ̇

(
u

γ

)
du+

∫ γ

0

q(zγ − u)q−1 1

γ2
ψ̇

(
u

γ

)
du|

= |
∫ γ

0

q[(zγ − u)q−1 − (zγ + u)q−1]
1

γ2
ψ̇

(
u

γ

)
dt|

(a)
= 2q(q − 1)|

∫ γ

0

z̃q−2
u u

1

γ2
ψ̇

(
u

γ

)
du|

(b)

≥ 2q(q − 1)(zγ + γ)q−2|
∫ γ

0

u
1

γ2
ψ̇

(
u

γ

)
du|

(c)
= q(q − 1)(zγ + γ)q−2. (66)

Equality (a) is due to the mean-value theorem. To obtain (b) we used the fact that z̃u ∈ [zγ − γ, zγ + γ], and that

zγ − γ > 0 (hence z̃u > 0). The last equality is the result of integration by parts. Note that since zγ → 0 as γ → 0,
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q(q − 1)(zγ + γ)q−2 →∞.

Case II:
zγ
γ → c, where c ∈ (0, 1). For large enough values of γ, we know that zγ < γ. Hence, according to (65)

we have

r̈qγ(zγ) = −
∫ γ

0

q(zγ + u)q−1 1

γ2
ψ̇

(
u

γ

)
du+

∫ zγ

0

q(zγ − u)q−1 1

γ2
ψ̇

(
u

γ

)
du

−
∫ γ

zγ

q|zγ − u|q−1 1

γ2
ψ̇

(
u

γ

)
du

≥ −
∫ γ

zγ

q(zγ + u)q−1 1

γ2
ψ̇

(
u

γ

)
du

≥ −q(2zγ)q−1

∫ γ

zγ

1

γ2
ψ̇

(
u

γ

)
du =

q(2zγ)q−1

γ
ψ

(
zγ
γ

)
. (67)

It is straightforward to confirm that
q(2zγ)q−1

γ ψ(
zγ
γ )→∞.

Case III: First note that since zγ/γ → 0, for large enough γ, zγ < γ/2. Similar to the derivation in (67), we have

r̈qγ(zγ) ≥ −
∫ γ

zγ

q|zγ − u|q−1 1

γ2
ψ̇

(
u

γ

)
du

≥ −
∫ γ

zγ

q(zγ + u)q−1 1

γ2
ψ̇

(
u

γ

)
du

≥ −
∫ γ

γ/2

q(zγ + u)q−1 1

γ2
ψ̇

(
u

γ

)
du

≥ q(zγ +
γ

2
)q−1 r(0.5)

γ
. (68)

Again, it is straightforward to see that the last expression goes to ∞ as γ → 0.

We remind the reader that our goal is to show that

lim
γ→0

Hγ = XS

(
X>S diag[῭(β̂)]XS + λ diag[r̈qS(β̂)]

)−1

X>S diag[῭(β̂)],

where S denotes the active set of β̂. Since, ‖β̂γ − β̂‖2 → 0, and ˙̀ and ῭ functions are continuous, it is straightforward

to prove that

˙̀
i(β̂

γ)→ ˙̀
i(β̂), ῭

i(β̂
γ)→ ῭

i(β̂).

Let S denote the set of indices of the non-zero elements of β̂, and define

A = X>Scdiag[῭(β̂γ)]XSc + diag[r̈qγ,Sc(β̂
γ)], B = X>Scdiag[῭(β̂γ)]XS ,

C = X>S diag[῭(β̂γ)]XS + diag[r̈qγ,S(β̂γ)]. (69)

Also define D , (C −B>A−1B)−1. According to Lemmas 19 and 20, the diagonal elements of diag[r̈qγ,Sc(β̂
γ)] go
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off to infinity. Hence, it is straightforward to show that A−1 → 0, as γ → 0. By using the following identity

 A B

B> C

−1

=

A−1 +A−1BDB>A−1 −A−1BD

−DB>A−1 D

 , (70)

and noting that limγ→0A
−1 +A−1BDB>A−1 = 0, limγ→0−A−1BD = 0, and limγ→0D = (X>S diag[῭(β̂)]XS)−1

we obtain

lim
γ→0

Hγ = XS

(
X>S diag[῭(β̂)]XS + λ diag[r̈qS(β̂λ)

)−1

X>S diag[῭(β̂)].

A.5 Proofs of the Lemmas of Section 4

A.5.1 Proof of Lemma 3

Since

˙̀
i(β) = −yi +

ex
>
i β

1 + ex
>
i β
, ῭

i(β) =
ex
>
i β

(1 + ex
>
i β)2

,
...
` i(β) =

ex
>
i β(1− ex>i β)

(1 + ex
>
i β)3

using simple algebra it is straightforward to show that for any β, we have

‖ ˙̀(β)‖∞ ≤ 1, ‖῭(β)‖∞ ≤ 1/4, ‖
...
` (β)‖∞ ≤ 1/10

Therefore,

‖῭/i(β+ δ)− ῭
/i(β)‖2 ≤ ‖῭(β+ δ)− ῭(β)‖2 =

√∑
i

(
῭(βi + δi)− ῭(βi)

)2

=

√∑
i

...
` (βi + εi)2(xTi δ)2 using the mean-value Theorem where εi ∈ [0, δi]

≤
√
δ>X>Xδ ≤

√
σmax(X>X)‖δ‖2.

Finally, based on the inequality above, we have

sup
t∈[0,1]

‖῭/i((1− t)β̂/i + tβ̂)− ῭
/i(β̂)‖2

‖β̂/i − β̂‖2
≤ sup

t∈[0,1]

(1− t)‖β̂/i − β̂‖2
√
σmax(X>X)

‖β̂/i − β̂‖2
≤
√
σmax(X>X).

The last statement of the Theorem is a direct result of Lemma 12.

A.5.2 Proof of Lemma 8

Since

˙̀
i(β) = f ′(x>i β)− yif ′(x>i β)/f(x>i β),

῭
i(β) = f ′′(x>i β)− yi(f ′/f)′(x>i β),

...
` i(β) = f ′′′(x>i β)− yi(f ′/f)′′(x>i β),
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where

f ′(z) =
ez

1 + ez
, f ′′(z) =

ez

(1 + ez)2
, f ′′′(z) =

ez(1− ez)
(1 + ez)3

. (71)

Concerning equations (71), the following inequalities hold

f ′(z) ≤ 1, f ′′(z) ≤ 1/4, f ′′′(z) ≤ 1/10.

For any x > 0, consider the function

h(x) :=
x

(1 + x) log(1 + x)
.

It is straightforward to check that h(x) is a decreasing function of x > 0 and that limx→0 h(x) = 1. Hence, by simply

using x = ez, for any z, we have

f ′(z)/f(z) ≤ 1 leading to ‖ ˙̀(β)‖∞ ≤ 1 + ‖y‖∞.

Moreover,

f ′′/f = f ′/f × 1/(1 + ez) ≤ 1

f ′′′/f = f ′′/f × (1− ez)/(1 + ez) ≤ 1.

Since

(f ′/f)′′ = f ′′′/f + 2f ′3/f3 − 3f ′f ′′/f2 leading to |(f ′/f)′′| ≤ 6.

Therefore, ‖
...
` (β)‖∞ ≤ 1 + 6‖y‖∞, leading to

‖῭/i(β+ δ)− ῭
/i(β)‖2 ≤ ‖῭(β+ δ)− ῭(β)‖2 =

√∑
i

(
῭(βi + δi)− ῭(βi)

)2

=

√∑
i

...
` (βi + εi)2δ2

i using the mean-value Theorem where εi ∈ [0, δi]

≤ (1 + 6‖y‖∞)
√
σmax(X>X)‖δ‖2.

Finally, based on the inequality above, we have

sup
t∈[0,1]

‖῭/i((1− t)β̂/i + tβ̂)− ῭
/i(β̂)‖2

‖β̂/i − β̂‖2
≤ (1 + 6‖y‖∞)

√
σmax(X>X) sup

t∈[0,1]

(1− t)‖β̂/i − β̂‖2
‖β̂/i − β̂‖2

≤ (1 + 6‖y‖∞)
√
σmax(X>X).
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A.5.3 Proof of Lemma 9

We prove Lemma 9 using the following inequality (for large enough n such that
√
c̃ log3/2 n > 1)

Pr

(
(1 + 6‖y‖∞)

√
σmax(X>X) ≥ ζ1 log3/2 n

)
≤ Pr

(
‖y‖∞ ≥ (2 log n)

√
9c̃ log n

)
+ Pr

(
σmax(X>X) ≥ c(1 +

3√
δ0

)2

)
,

where ζ1 = 37
√
cc̃
(

1 + 3√
δ0

)
. Note that according to Lemma 12, we have

Pr

[
σmax(X>X) ≥ c(1 +

3√
δ0

)2

]
≤ e−p.

In the next step, we bound ‖y‖∞. We have

Pr(‖y‖∞ ≥ t | X) ≤
n∑
i=1

Pr(yi ≥ t | X). (72)

For t > ‖λ‖∞, set γi = log
(
t
λi

)
. We have

Pr(yi ≥ t | X) = Pr(eγiyi ≥ eγit |X)
(a)

≤ e−γitE(eγiyi)
(b)
= e−γiteλi(e

γ
i −1) = e

−t log t
λi

+t−λi ,

where (a) is a result of Markov’s inequality, and (b) uses the formula for the moment generating function of a Poisson

random variable. It is straightforward to see that e
−t log t

λi
+t−λi ≤ e−t log t

‖λ‖∞
+t−‖λ‖∞ . Hence,

Pr(‖y‖∞ ≥ t | X) ≤ ne−t log t
‖λ‖∞

+t−‖λ‖∞ .

If we set t = 2‖λ‖∞ log n, then (for large enough n such that log log n > 2) we will have

Pr(‖y‖∞ ≥ 2‖λ‖∞ log n | X) ≤ n1−‖λ‖∞ log logn.

Define the event

Ep = {1 ≤ ‖λ‖∞ ≤
√

9c̃ log n},

and the set

Xp = {X | 1 ≤ ‖λ‖∞ ≤
√

9c̃ log n}.

First note that

λi = log(1 + ex
>
i β
∗
) ≤ log(1 + e|x

>
i β
∗|) ≤ log(e|x

>
i β
∗| + e|x

>
i β
∗|) ≤ log 2 + |x>i β∗|.

If we define the event

Ẽp = {log 2 + max
i
|x>i β∗| ≤

√
9c̃ log n} ∩ {max

i
|x>i β∗| ≥ 1},
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then Ẽp ⊂ Ep, leading to

Pr
(
Ecp
)
≤ Pr

(
Ẽcp
)
≤ Pr

(
{log 2 + max

i
|x>i β∗| ≤

√
9c̃ log n}c

)
+ Pr({max

i
|x>i β∗| ≥ 1}c).

Note that (for large enough n)

Pr
(
{log 2 + max

i
|x>i β∗| ≤

√
9c̃ log n}c

)
≤ nPr

(
|x>i β∗| ≥

√
9c̃ log n− 1

)
≤ nPr

(
|x>i β∗| ≥ 2

√
c̃ log n

) (c)

≤ 2ne−2 logn ≤ 2

n
, (73)

where (c) is a direct consequence of the Gaussian tail bound in Lemma 10 and the fact that x>i β
∗ ∼ N(0, c̃).

Furthermore, if Z ∼ N(0, c̃), then

Pr({max
i
|x>i β∗| ≥ 1}c) =

(
Pr(|x>i β∗| < 1)

)n
= (P (Z < 1))n. (74)

We now have

Pr(‖y‖∞ ≥ (2 log n)
√

9c̃ log n)

=

∫
X∈Xp

Pr(‖y‖∞ ≥ (2 log n)
√

9c̃ log n | X)dpX +

∫
X∈X cp

Pr(‖y‖∞ ≥ (2 log n)
√

9c̃ log n | X)dpX

≤
∫
X∈Xp

Pr(‖y‖∞ ≥ 2 log n‖λ‖∞ | X)dpX + Pr(Ecp)

≤
∫
X∈Xp

n1−‖λ‖∞ log logndpX + Pr
(
Ẽcp
)

(75)

≤
∫
X∈Xp

n1−log logndpX + Pr
(
{log 2 + max

i
|x>i β∗| ≤

√
9c̃ log n}c

)
+ Pr({max

i
|x>i β∗| ≥ 1}c)

≤ n1−log logn +
2

n
+ e−n log( 1

P (Z≤1)
),

where Z ∼ N(0, c̃).

A.5.4 Proof of Lemma 4

Note that

f ′(a) =
a√

1 +
(
a
γ

)2
≤ γ,

f ′′(a) =

(
1 +

(
a

γ

)2
) 3

2

,

f ′′′(a) =
−3aγ3

(a2 + γ2)
5
2

. (76)

Note that |f ′′′(a)| ≤ 3
γ . To see this consider the following two cases:

• Case I, |a| ≤ γ:

|f ′′′(a)| ≤ 3γ4

γ5
≤ 3

γ
.
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• Case II, |a| > γ:

|f ′′′(a)| ≤ 3|a|γ3

|a|5
≤ 3γ3

a4|
≤ 3

γ
.

Therefore,

‖῭/i(β+ δ)− ῭
/i(β)‖2 ≤ ‖῭(β+ δ)− ῭(β)‖2 =

√∑
i

(
῭(βi + δi)− ῭(βi)

)2

=

√∑
i

...
` (βi + εi)2(x>i δ)2 using the mean-value Theorem where εi ∈ [0, δi]

≤ 3

γ

√
δ>X>Xδ ≤ 3

γ

√
σmax(X>X)‖δ‖2.

Finally, based on the inequality above, we have

sup
t∈[0,1]

‖῭/i((1− t)β̂/i + tβ̂)− ῭
/i(β̂)‖2

‖β̂/i − β̂‖2
≤ sup

t∈[0,1]

(1− t)‖β̂/i − β̂‖2
√
σmax(X>X)

‖β̂/i − β̂‖2
≤
√
σmax(X>X).

A.5.5 Proof of Lemma 7

Define

β̂ = arg min
β
f(β) = arg min

β

n∑
j=1

(yj − x>j β)2

2
+ λ

p∑
j=1

r(βi),

β̂/i = arg min
β
f/i(β) = arg min

β

n∑
j=1,j 6=i

(yj − x>j β)2

2
+ λ

p∑
j=1

r(βi) (77)

Furthermore, define r0.5(β) = γ
2β

2 +(1−γ)rα(β). Since y = Xβ∗+ε, where ε ∼ N(0, Iσ2
ε ), the optimality conditions

yield

y −Xβ̂ = (I −X(X>X +
λγ

2
I)−1X>)y+λX(X>X +

λγ

2
I)−1ṙ0.5(β̂)

= (I −X(X>X +
λγ

2
I)−1X>)Xβ∗ + (I −X(X>X +

λγ

2
I)−1X>)ε

+λX(X>X +
λγ

2
I)−1ṙ0.5(β̂). (78)

We bound ‖y −Xβ̂‖∞ and complete the proof of Lemma 7, by separately bounding the infinity norm of each of the

three terms in 78 using Lemma 21, 22 and 23, and defining

ζ̃ = 2
√
cc̃+ 2σε + λζ̄, (79)

where ζ̄ is introduced in Lemma 23.

Lemma 21. Under the assumptions of Lemma 7 we have

Pr(‖(I −X(X>X +
λγ

2
I)−1X>)Xβ∗‖∞ > 2

√
cc̃log n) ≤ 2

n
.
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Proof. First note that

(I −X(X>X +
λγ

2
I)−1X>)Xβ∗ =

λγ

2
X(X>X +

λγ

2
I)−1β∗. (80)

Define Di = (X>/iX/i + λγ
2 I)−1. According to the matrix inversion lemma we have

x>i (X>X +
λγ

2
I)−1β∗ = x>i Diβ

∗ − x
>
i Dixix

>
i Diβ

∗

1 + x>i Dixi
=

x>i Diβ
∗

1 + x>i Dixi
. (81)

Note that conditioned on X/i the distribution of x>i Diβ
∗ is a zero mean Gaussian random variable with variance

vi = ‖Σ1/2Diβ
∗‖22 ≤

4ρmax

λ2γ2 ‖β∗‖22. Hence, (81) and the Gaussian tail bound, i.e. Lemma 10, lead to

Pr(|x>i (X>X +
λγ

2
I)−1β∗| > t | X/i) ≤ Pr(|x>i Diβ

∗| > t | X/i) ≤ 2e
− t2

2‖Σ1/2Diβ
∗‖22 ≤ 2e

− λ2γ2t2

8ρmax‖β∗‖22 . (82)

Hence, by marginalizing X/i, we get

Pr(|x>i (X>X +
λγ

2
I)−1β∗| > t) ≤ 2e

− λ2γ2t2

8ρmax‖β‖22 = 2e−
λ2γ2t2

8cc̃ .

By setting t = 4
√
cc̃logn
λγ we have

Pr(|x>i (X>X +
λγ

2
I)−1β∗| > 4

√
cc̃log n

λγ
) ≤ 2

n2
.

This combined with a union bound and (80) proves that

Pr

(
‖(I −X(X>X +

λγ

2
I)−1X>)Xβ∗)‖∞ > 2

√
cc̃log n

)
≤ 2

n
.

Lemma 22. If ε ∼ N(0, Iσ2
ε ), then

Pr

[
‖(I −X(X>X +

λγ

2
I)−1X>)ε‖∞ ≥ 2σε

√
log n

]
≤ 2

n
.

Proof. Note that conditioned on X, the distribution of v = (I −X(X>X + λγ
2 I)−1X>)ε is multivariate Gaussian

with mean zero and covariance matrix σ2
ε (I −X(X>X + λγ

2 I)−1X>)2. We have

(I −X(X>X +
λγ

2
I)−1X>)2 = I −X(X>X +

λγ

2
I)−1X> − λγ

2
X(X>X +

λγ

2
I)−2X>. (83)

We define σ2
i (X) =

(
1− x>i (X>X + λγ

2 I)−1xi − λγ
2 x
>
i (X>X + λγ

2 I)−2xi

)
σ2
ε . Clearly σ2

i (X) ≤ σ2
ε , hence,

Pr(‖v‖∞ > t | X) ≤
n∑
i=1

Pr(|vi| > t | X) ≤
n∑
i=1

2e
− t2

2σ2
i

(X) = 2ne
− t2

2σ2
ε . (84)

Hence, by setting t = 2σε
√

log n, we have

Pr(‖v‖∞ > t | X) ≤ 2

n
.
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Lemma 23. Under the assumptions of Lemma 7 we have

Pr

[
‖X(X>X +

λγ

2
I)−1ṙ0.5(β̂)‖∞ > ζ̄

√
log n

]
≤ 6

n
+ 2ne−n+1 + ne−p, (85)

where

ζ̄ =
5c

λ2γδ0

(
1 +

α(1− γ)

γ

)(
2
√

(cc̃+ σ2
ε ) +

√
10c(cc̃+ σ2

ε )

λγ

)
+
√

20ζ(cc̃+ σ2
ε ),

ζ =
2c

λ3γ2

(
1 +

α(1− γ)

2γ

)
. (86)

Proof. Since f/i(β̂/i) ≤ f/i(0), we have

2λγ‖β̂/i‖22 ≤ ‖y/i‖22. (87)

Furthermore, due to r̈0.5(β) ≤ γ + α(1−γ)
2 , ṙ0.5(0) = 0 (see Lemma 14), and (87), we have

‖ṙ0.5(β̂/i)‖22 ≤
(
γ +

α(1− γ)

2

)
‖β̂/i‖22 ≤

(
1

2λ
+
α(1− γ)

4λγ

)
‖y/i‖22. (88)

The first order optimality condition yields

X>X(β̂/i − β̂) + λṙ(β̂/i)− λṙ(β̂) = −xi(yi − x>i β̂/i).

Since the minimum eigenvalue of the Hessian of r(β) is 2γ, therefore the minimum eigenvalue of X>X +λ diag[r̈(β)]

(for all β) is greater than 2λγ, leading to

‖β̂/i − β̂‖2 ≤
|yi − x>i β̂/i|

2λγ
‖xi‖2.

This together with r̈0.5(β) ≤ γ + α(1−γ)
2 yields

‖ṙ0.5(β̂/i)− ṙ0.5(β̂)‖2 ≤
(
γ +

α(1− γ)

2

)
‖β̂/i − β̂‖2 ≤

(
1

2λ
+
α(1− γ)

4λγ

)
|yi − x>i β̂/i|‖xi‖2.

Define Di = (X>/iX/i + λγ
2 I)−1. According to the matrix inversion lemma we have

x>i (X>X +
λγ

2
I)−1ṙ0.5(β̂) = x>i Diṙ0.5(β̂)− x

>
i Dixix

>
i Diṙ0.5(β̂)

1 + x>i Dixi
=
x>i Diṙ0.5(β̂)

1 + x>i Dixi
. (89)

Furthermore, we have

|x>i Diṙ0.5(β̂)| ≤ |x>i Diṙ0.5(β̂/i)|+ |x>i Di(ṙ0.5(β̂)− ṙ0.5(β̂/i))|. (90)
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First note that, since the maximum eigenvalue of Di is λγ
2 we have

|x>i Di(ṙ0.5(β̂)− ṙ0.5(β̂/i))|

≤ 2

λγ
‖xi‖2‖ṙ0.5(β̂)− ṙ0.5(β̂/i)‖2 ≤

1

λ2γ
‖xi‖22

(
1 +

α(1− γ)

2γ

)
|yi − x>i β̂/i|

≤ 1

λ2γ

(
1 +

α(1− γ)

2γ

)
‖xi‖22(|yi|+ |x>i β̂/i|). (91)

Furthermore, we have

1. Due to Lemma 11, Pr(‖xi‖22 > 5pρmax) ≤ e−p, leading to

Pr(‖xi‖22 >
5c

δ0
) ≤ e−p. (92)

2. Note that yi ∼ N(0,β>Σβ + σ2
ε ). Furthermore, β>Σβ + σ2

ε ≤ ρmaxβ
>β + σ2

ε ≤ cc̃ + σ2
ε . Hence, using the

Gaussian tail bound, i.e. Lemma 10, we have

Pr(|yi| > t) ≤ 2e
− t2

2(cc̃+σ2
ε ) . (93)

Hence,

Pr(|yi| > 2
√

(cc̃+ σ2
ε ) log n) ≤ 2

n2
. (94)

3. Given X/i,y/i, the distribution of x>i β̂/i is N(0, β̂>/iΣβ̂/i). Furthermore, β̂>/iΣβ̂/i ≤
cβ̂>/iβ̂/i

n ≤ c‖y/i‖22
2nλγ , where

the last inequality is due to (87). Hence, we have

Pr(|x>i β̂/i| > t|X/i,y/i) ≤ 2e
− nλγt2

c‖y/i‖
2
2 . (95)

According to Lemma 11 since yi
i.i.d.∼ N(0,β>Σβ + σ2

ε ), and β>Σβ + σ2
ε ≤ cc̃+ σ2

ε , we have

Pr(‖y/i‖22 > 5(n− 1)(cc̃+ σ2
ε )) ≤ e−n+1. (96)

Let B denote the event that ‖y/i‖22 ≤ 5(n− 1)(cc̃+ σ2
ε ). Then, combining (95) and (96), we have

Pr(|x>i β̂/i| > t) ≤ Pr(|x>i β̂/i| > t | B) + Pr(Bc) ≤ 2e
− λγt2

5c(cc̃+σ2
ε ) + e−n+1.

Hence,

Pr

[
|x>i β̂/i| >

√
10c(cc̃+ σ2

ε )

λγ
log n

]
≤ 2

n2
+ e−n+1. (97)

By combining (92), (94), (97), and (91) we conclude that

Pr

[
|x>i Di(ṙ0.5(β̂)− ṙ0.5(β̂/i))| >

5c

λ2γδ0

(
1 +

α(1− γ)

2γ

)(
2
√

(cc̃+ σ2
ε ) +

√
10c(cc̃+ σ2

ε )

λγ

)√
log n

]

≤ 4

n2
+ e−n+1 + e−p. (98)

51



Next, we compute an upper bound on |x>i Diṙ0.5(β̂/i)|. Since xi is independent of y/i and X/i, we conclude that

given X/i and y/i, x
>
i Diṙ0.5(β̂/i) is a Gaussian random variable with mean zero and variance

‖Σ1/2Diṙ0.5(β̂/i)‖22 ≤
4ρmax

λ2γ2
‖ṙ0.5(β̂/i)‖22 ≤

2ρmax

λ3γ2

(
1 +

α(1− γ)

2γ

)
‖y/i‖22 =

ζ‖y/i‖22
n

,

where ζ = 2c
λ3γ2

(
1 + α(1−γ)

2γ

)
, and the second inequality is due to (88). Hence,

P(|x>i Diṙ0.5(β̂/i)| > t | X/i,y/i) ≤ 2e
− nt2

2ζ‖y/i‖
2
2 .

Considering the event B of ‖y/i‖22 ≤ 5(n− 1)(cc̃+ σ2
ε ), we have

Pr
(
|x>i Diṙ0.5(β̂/i)| > t

)
≤ Pr

(
|x>i Diṙ0.5(β̂/i)| > t

∣∣B)+ Pr(Bc) ≤ 2e
− t2

10ζ(cc̃+σ2
ε ) + e−n+1. (99)

Hence,

Pr
(
|x>i Diṙ0.5(β̂/i)| >

√
20ζ(cc̃+ σ2

ε ) log n
)
≤ 2

n2
+ e−n+1. (100)

By combining (89), (90), (98), and 100 we conclude that if

ζ̄ =
5c

λ2γδ0

(
1 +

α(1− γ)

γ

)(
2
√

(cc̃+ σ2
ε ) +

√
10c(cc̃+ σ2

ε )

λγ

)
+
√

20ζ(cc̃+ σ2
ε ),

then

Pr

[
|x>i (X>X +

λγ

2
I)−1ṙ0.5(β̂)| > ζ̄

√
log n

]
≤ Pr

[
|x>i Diṙ0.5(β̂)| ≥ ζ̄

√
log n

]
≤ 6

n2
+ 2e−n+1 + e−p. (101)

Hence,

Pr

[
‖X(X>X +

λγ

2
I)−1ṙ0.5(β̂‖∞| > ζ̄

√
log n

]
≤ 6

n
+ 2ne−n+1 + ne−p.

A.5.6 Proof of Lemma 2

Since rα(z) = α−1 log (eαz + e−αz + 2), we have eαr
α(z) = eαz + e−αz + 2, and because of Lemma 13, eαz + e−αz + 2 ≥

eα|z|. Moreover,
...
r α(z) = 2α2(e−αz − eαz)/(eαz + e−αz + 2)2 ≤ 2α2(e−αz − eαz)/e2α|z| ≤ 4α2e−α|z|. The next step is

‖r̈α(β+ δ)− r̈α(β)‖2
‖δ‖2

=

√∑
i (r̈α(βi + δi)− r̈α(βi))

2

‖δ‖2

=

√∑
i

...
r α(βi + εi)2δ2

i

‖δ‖2
using the mean-value Theorem where εi ∈ [0, δi]

=
4α2

√∑
i δ

2
i e
−2α|βi+εi|

‖δ‖2
≤ 4α2.
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A.6 Proof of Theorem 3

We first present lemmas necessary for the proof of Theorem 3. Lemmas are proved in section A.7.

Lemma 24. Let X ∈ Rm×p be a matrix with m > p = rank(X). Moreover, let D ∈ Rm×m and D+ Γ ∈ Rm×m be

diagonal matrices with positive elements, then

(
X>DX

)−1 −
(
X>(D+ Γ)X

)−1

= A−1X>ΓXA−1 −A−1X>ΓX
(
X>(D + Γ)X

)−1
X>ΓXA−1,

where A ,X>DX.

Lemma 25. Assume that X>(D+ Γ)X and X>DX are positive definite, and define:

Γ , diag(γ), (102)

ω̄max , σmax

(
XX>

)
, (103)

νmin , σmin

(
X>(D + Γ)X

)
, (104)

A , X>DX. (105)

Then,

∣∣∣z> (X>(D + Γ)X
)−1

z − z>
(
X>DX

)−1
z
∣∣∣ ≤ (‖γ‖2 +

(
ω̄max

νmin

)
‖γ‖24

)∥∥XA−1z
∥∥2

4
. (106)

Lemma 26. Let S denote the event that (22), (23), (24), and (25) hold. If S holds, then

∣∣∣∣∣x>i ∆∗/i −

(
˙̀
i(β̂)

῭
i(β̂)

)
Hii

1−Hii

∣∣∣∣∣ ≤ C̄i
(∥∥∥X/iJ

−1
/i xi

∥∥∥2

4
+
∥∥∥J−1

/i xi

∥∥∥2

4

)
,

where

∆∗/i , β̂/i − β̂,

H , X
(
λ diag[r̈(β̂)] +X> diag[῭(β̂)]X

)−1

X> diag[῭(β̂)],

J/i , λ diag[r̈(β̂/i)] +X>/i diag[῭/i(β̂/i)]X/i,

C̄i , 4 ‖xi‖2

(
c21(n)c2(n)

ν

)(
1 +

2c1(n)c2(n)(1 + ωmax,i)

ν2
‖xi‖2

)
,

and c1(n) and c2(n) are defined in Assumption 6, ν is defined in Assumption 7, and ωmax,i , σmax

(
X/iX

>
/i

)
.

Lemma 27. Let x ∼ N(0,Σ) with ρmax , σmax (Σ), where Σ ∈ Rp×p then

Pr
[
‖x‖24 > 2(1 + c)ρmax

√
p log p

]
≤ 2

pc
. (107)
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Moreover, if

ωmax , σmax

(
XX>

)
, (108)

νmin , σmin (J) , (109)

where x is independent of the symmetric matrix J ∈ Rp×p and X ∈ Rm×p, then

Pr

[∥∥J−1x
∥∥2

4
> 2(1 + c)

(
ρmax

ν2
min

)
√
p log p

]
<

2

pc
, (110)

Pr

[∥∥XJ−1x
∥∥2

4
> 2(1 + c)

(
ρmax

ν2
min

ωmax

)√
m logm

]
<

2

mc
. (111)

Proof of Theorem 3. Let S denote the event that (22), (23), (24), and (25) hold. Furthermore, define the following

events:

G ,

{
max

1≤i≤n

∣∣∣∣∣x>i ∆∗/i −

(
˙̀
i(β̂)

῭
i(β̂)

)
Hii

1−Hii

∣∣∣∣∣ > C
log p
√
p

}
, (112)

Ei ,

{∣∣∣∣∣x>i ∆∗/i −

(
˙̀
i(β̂)

῭
i(β̂)

)
Hii

1−Hii

∣∣∣∣∣ > C
log p
√
p

}
, (113)

Ẽi ,

{
C̄i

(∥∥∥X/iJ
−1
/i xi

∥∥∥2

4
+
∥∥∥J−1

/i xi

∥∥∥2

4

)
> C

log p
√
p

}
, (114)

Fi ,

{
C̄i

(∥∥∥X/iJ
−1
/i xi

∥∥∥2

4
+
∥∥∥J−1

/i xi

∥∥∥2

4

)
> C̄iCi

√
p log p

}
, (115)

Ki ,

{
C
√
p
≥ C̄iCi

√
p

}
, (116)

Wi ,
{
‖xi‖22 > 5pρmax

}
∪
{
ωmax >

(√
n+ 3

√
p
)2
ρmax

}
, (117)

where C in (113) is a positive constant (defined later in (123)), and

Ci , 2(1 + c)
(ρmax

ν2

)(
1 + ωmax

√
n− 1

p

log(n− 1)

log p

)
, (118)

C̄i , 4 ‖xi‖2

(
c21(n)c2(n)

ν

)(
1 +

2c1(n)c2(n)(1 + ωmax)

ν2
‖xi‖2

)
, (119)

ωmax , σmax

(
XX>

)
. (120)

The variable c in (118) is later set to 3, but for now all we need to know is that it is a positive constant. Due to

Lemma 26, if the event S holds, then for every i we have

C̄i

(∥∥∥X/iJ
−1
/i xi

∥∥∥2

4
+
∥∥∥J−1

/i xi

∥∥∥2

4

)
≥

∣∣∣∣∣x>i ∆∗/i −

(
˙̀
i(β̂)

῭
i(β̂)

)
Hii

1−Hii

∣∣∣∣∣ .
Since Pr[Sc] ≤ qn + q̃n, we have

Pr[G] ≤ Pr[G|S] + Pr[Sc] ≤ Pr

[
max

1≤i≤n
C̄i

(∥∥∥X/iJ
−1
/i xi

∥∥∥2

4
+
∥∥∥J−1

/i xi

∥∥∥2

4

)
> C

log p
√
p
| S
]

+ qn + q̃n

≤ 1

1− qn − q̃n
Pr

[
max

1≤i≤n
C̄i

(∥∥∥X/iJ
−1
/i xi

∥∥∥2

4
+
∥∥∥J−1

/i xi

∥∥∥2

4

)
> C

log p
√
p

]
+ qn + q̃n

≤ 1

1− qn − q̃n

n∑
i=1

Pr[Ẽi] + qn + q̃n. (121)
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Hence, we now obtain an upper bound for Pr[Ẽi];

Pr[Ẽi] ≤ Pr[Ẽi|Ki] + Pr[Kc
i ],

≤ Pr[Fi|Ki] + Pr[Kc
i ] ≤

Pr(Fi)

Pr(Ki)
+ Pr[Kc

i ]

≤
Pr

[∥∥∥X/iJ
−1
/i xi

∥∥∥2

4
> 2(1 + c)

(
ρmax

ν2 ωmax

)√
n− 1 log(n− 1)

]
Pr(Ki)

+

Pr

[∥∥∥J−1
/i xi

∥∥∥2

4
> 2(1 + c)

(
ρmax

ν2

)√
p log p

]
Pr(Ki)

+ Pr[Kc
i ]

1
≤

(
2

(n− 1)c
+

2

pc

)
1

Pr(Ki)
+ Pr[Kc

i ], (122)

where
1
≤ is due to Inequality (111) from Lemma 27. To bound Pr[Kc

i ] we define

C , 32
√

5

(
c21(n)c2(n)(pρmax)3/2

ν3

)(
1 +

(√
n

p
+ 3

)2

pρmax

√
n− 1

p

log(n− 1)

log p

)

×

(
1 +

2c1(n)c2(n)
√

5

(
1 +

(√
n
p + 3

)2

pρmax

)
√
pρmax

ν2

)
(123)

obtained by setting c = 3, and computing pC̄iCi after putting
√

5pρmax and
(√
n+ 3

√
p
)2
ρmax, bounds in event Wi,

into ‖xi‖2 and ωmax, respectively. Next,

Pr[Kc
i ] = Pr

[
C

p
< C̄iCi

]
≤ Pr

[
C < pC̄iCi

∣∣W c
i ] + Pr[Wi]

= Pr [C < C] + Pr[Wi] = Pr[Wi].

The term Pr[Wi] is exponentially small because xi is N(0,Σ) with ρmax = σmax (Σ), leading to

Pr[Wi] ≤ Pr
[
‖xi‖22 > 5pρmax

]
+ Pr

[
σmax

(
XX>

)
>
(√
n+ 3

√
p
)2
ρmax

]
≤ 2e−p, (124)

due to Lemma 11 and Lemma 12. In summary, since for p ≥ 1 we have 1
1−e−p < 2, for c = 3 we obtain

Pr[Ẽi] ≤
4

(n− 1)3
+

4

p3
+ 2e−p.

This combined with (121) leas to

Pr

[
max

1≤i≤n

∣∣∣∣∣x>i ∆∗/i −

(
˙̀
i(β̂)

῭
i(β̂)

)
Hii

1−Hii

∣∣∣∣∣ > C
log p
√
p

]
≤

(
4n

(n− 1)3
+

4n

p3
+ 2ne−p

)
1

1− qn − q̃n
+ qn + q̃n

≤ 8n

(n− 1)3
+

8n

p3
+ 4ne−p + qn + q̃n, (125)

where the last inequality is due to the assumption that qn + q̃n ≤ 0.5. Hence, Inequality (26) in Theorem 3 follows.

Note that in the presentation of Theorem 3, we replaced respectively 32
√

5 and 2
√

3 with the upper-bounds 72 and

5, and we replaced
√

n−1
p

log(n−1)
log p with the upper bound

√
n
p

logn
log p . We also used δ0 to denote n/p.
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A.7 Proofs of lemmas 24, 25, 26, 27 and 12

Proof of Lemma 24. Let Q , {i : Γii 6= 0}. Moreover, let XQ,: ∈ R|Q|×p stand for the sub-matrix of X restricted to

the rows indexed by Q, and let Γ̃ ∈ R|Q|×|Q| be the diagonal matrix with the diagonal elements of Γ indexed by Q.

Then, X>ΓX = X>Q,:Γ̃XQ,:, and in turn, the Woodbury inversion lemma yields

(X>DX +X>ΓX)−1 = (A+X>Q,:Γ̃XQ,:)
−1

= A−1 −A−1X>Q,:(Γ̃
−1 +XQ,:A

−1X>Q,:)
−1XQ,:A

−1. (126)

Using the Woodbury lemma again we obtain

(Γ̃−1 +XQ,:A
−1X>Q,:)

−1 = Γ̃− Γ̃XQ,:(A+X>Q,:Γ̃XQ,:)
−1X>Q,:Γ̃

= Γ̃− Γ̃XQ,:(X
>(Γ +D)X)−1X>Q,:Γ̃. (127)

Hence, by using (126) and (127) we have

(X>DX)−1 − (X>DX +X>ΓX)−1 = A−1X>
(
Γ− ΓX(X>(Γ +D)X)−1X>Γ

)
XA−1.

Proof of Lemma 25. Let A ,X>DX, then

∣∣∣z> (X>(D+ Γ)X
)−1

z − z>
(
X>DX

)−1
z
∣∣∣

1
=

∣∣∣z> (A−1X>ΓXA−1 −A−1X>ΓX
(
X>(D+ Γ)X

)−1
X>ΓXA−1

)
z
∣∣∣

2
≤

∣∣z>A−1X>ΓXA−1z
∣∣+ z>A−1X>ΓX

(
X>(D+ Γ)X

)−1
X>ΓXA−1z

3
≤ ‖γ‖2

∥∥XA−1z
∥∥2

4
+ z>A−1X>ΓX

(
X>(D+ Γ)X

)−1
X>ΓXA−1z

4
≤ ‖γ‖2

∥∥XA−1z
∥∥2

4
+

(
ω̄max

νmin

)
z>A−1X>Γ2XA−1z

5
≤ ‖γ‖2

∥∥XA−1z
∥∥2

4
+

(
ω̄max

νmin

)
‖γ‖24

∥∥XA−1z
∥∥2

4

=

(
‖γ‖2 +

(
ω̄max

νmin

)
‖γ‖24

)∥∥XA−1z
∥∥2

4
, (128)

where
1
= is due to Lemma 24,

2
≤ is due to the triangle inequality, and the fact that X>(D+ Γ)X is positive definite,

and
3
≤ and

5
≤ are due to Cauchy-Schwartz inequality:

x> diag[γ]x =

n∑
i=1

x2
i γi ≤

√
‖x‖44‖γ‖22 = ‖x‖24‖γ‖2.

Finally,
4
≤ is due to (108) and (109).

Proof of Lemma 26. Define the approximate leave-i-out perturbation vector as

∆̂/i , ˙̀
i(β̂)[J/i(β̂/i −∆∗/i)]

−1xi, (129)
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where the exact leave-i-out perturbation vector is given by

∆∗/i , β̂/i − β̂. (130)

Woodbury lemma yields:

x>i ∆̂/i = ˙̀
i(β̂)x>i

(
λ diag[r̈(β̂/i −∆∗/i)] +X>/i diag[῭/i(β̂/i −∆∗/i)]X/i

)−1

xi

= ˙̀
i(β̂)x>i

(
λ diag[r̈(β̂)] +X>/i diag[῭/i(β̂)]X/i

)−1

xi

= ˙̀
i(β̂)x>i

(
λ diag[r̈(β̂)] +X> diag[῭(β̂)]X − xix>i ῭

i(β̂)
)−1

xi

=

(
˙̀
i(β̂)

῭
i(β̂)

) ῭
i(β̂)x>i

(
λ diag[r̈(β̂)] +X> diag[῭(β̂)]X

)−1

xi

1− ῭
i(β̂)x>i

(
λ diag[r̈(β̂)] +X> diag[῭(β̂)]X

)−1

xi

=

(
˙̀
i(β̂)

῭
i(β̂)

)
Hii

1−Hii
, (131)

where H ,X
(
λ diag[r̈(β̂)] +X> diag[῭(β̂)]X

)−1

X> diag[῭(β̂)]. Define

f/i(θ) , λṙ(θ) +X>/i
˙̀
/i(θ). (132)

The leave-one-out estimate, β̂/i = β̂ + ∆∗/i, satisfies f/i(∆
∗
/i) = 0. The multivariate mean-value Theorem yields

0 = f/i(β̂ + ∆∗/i) = f/i(β̂) +

(∫ 1

0

J/i(β̂ + t∆∗/i)dt

)
∆∗/i (133)

where the Jacobean is

J/i(θ) = λ diag[r̈(θ)] +X>/i diag[῭/i(θ)]X/i. (134)

Moreover, β̂ satisfies

0 = λṙ(β̂) +X> ˙̀(β̂) = f/i(β̂) + ˙̀
i(β̂)xi.

We get

˙̀
i(β̂)xi = −

(∫ 1

0

J/i(β̂ + t∆∗/i)dt

)
∆∗/i,

so that

∆∗/i = − ˙̀
i(β̂)

(∫ 1

0

J/i(β̂ + t∆∗/i)dt

)−1

xi, (135)

leading to the following inequality

∥∥∥∆∗/i∥∥∥
2
≤

(
| ˙̀i(β̂)|
ν

)
‖xi‖2 , (136)
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as a consequence of Assumption 7. Next, we look at the part of ∆∗i,λ dependent on xi, so we rewrite (135) as

∆∗/i = − ˙̀
i(β̂)

(∫ 1

0

J/i(β̂/i − (1− t)∆∗/i)dt
)−1

xi. (137)

Let us rewrite the Jacobean in a more compact form:

J/i(θ) = X̄>/iD/i(θ)X̄/i, (138)

where

X̄/i ,

X/i

I

 ∈ R(n−1+p)×p, D/i(θ) , diag

῭
/i(θ)

λr̈(θ)

 ∈ R(n−1+p)×(n−1+p) . (139)

Define

γδ/i(θ) ,

 ῭
/i(θ + δ)− ῭

/i(θ)

λ(r̈(θ + δ)− r̈(θ))

 (140)

so that

J/i(θ + δ) = J/i(θ) + X̄>/i diag
[
γδ/i(θ)

]
X̄/i, (141)

Note that J/i(θ + δ) is positive definite for all t ∈ [0, 1], θ = β̂/i and δ = −(1 − t)∆∗/i, due to Assumption 7. The
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last steps of the proof are as follows:

∣∣∣x>i ∆∗/i − x
>
i ∆̂/i

∣∣∣ = | ˙̀i(β̂)|

∣∣∣∣∣x>i
(∫ 1

0

J/i(β̂/i − (1− t)∆∗/i)dt
)−1

xi − x>i J−1
/i (β̂/i −∆∗/i)xi

∣∣∣∣∣
≤ | ˙̀i(β̂)|

∣∣∣∣∣x>i
(∫ 1

0

J/i(β̂/i − (1− t)∆∗/i)dt
)−1

xi − x>i J−1
/i (β̂/i)xi

∣∣∣∣∣
+ | ˙̀i(β̂)|

∣∣∣x>i J−1
/i (β̂/i)xi − x>i J−1

/i (β̂/i −∆∗/i)xi

∣∣∣
0
≤ | ˙̀i(β̂)|

∣∣∣∣∣x>i J−1
/i (β̂/i)xi − x>i

(
J/i(β̂/i) + X̄>/i diag

[∫ 1

0

γ−(1−t)∆∗
/i
/i(β̂/i)dt

]
X̄/i

)−1

xi

∣∣∣∣∣
+ | ˙̀i(β̂)|

∣∣∣∣x>i J−1
/i (β̂/i)xi − x>i

(
J/i(β̂/i) + X̄>/i diag

[
γ−∆∗

/i
/i(β̂/i)

]
X̄/i

)−1

xi

∣∣∣∣
1
≤ | ˙̀i(β̂)|

(∥∥∥∥∫ 1

0

γ−(1−t)∆∗
/i
/i(β̂/i)dt

∥∥∥∥
2

+
( ω̄max,i

ν

)∥∥∥∥∫ 1

0

γ−(1−t)∆∗
/i
/i(β̂/i)dt

∥∥∥∥2

4

)∥∥∥X̄/iJ
−1
/i (β̂/i)xi

∥∥∥2

4

+ | ˙̀i(β̂)|
(∥∥∥γ−∆∗

/i
/i(β̂/i)

∥∥∥
2

+
( ω̄max,i

ν

)∥∥∥γ−∆∗
/i
/i(β̂/i)

∥∥∥2

4

)∥∥∥X̄/iJ
−1
/i (β̂/i)xi

∥∥∥2

4

2
≤ | ˙̀i(β̂)|

(∥∥∥∥∫ 1

0

γ−(1−t)∆∗i,λ/i(β̂/i)dt

∥∥∥∥
2

+
( ω̄max,i

ν

)∥∥∥∥∫ 1

0

γ−(1−t)∆∗
/i
/i(β̂/i)dt

∥∥∥∥2

2

)∥∥∥X̄/iJ
−1
/i (β̂/i)xi

∥∥∥2

4

+ | ˙̀i(β̂)|
(∥∥∥γ−∆∗i,λ/i

(β̂/i)
∥∥∥

2
+
( ω̄max,i

ν

)∥∥∥γ−∆∗
/i
/i(β̂/i)

∥∥∥2

2

)∥∥∥X̄/iJ
−1
/i (β̂/i)xi

∥∥∥2

4

3
≤ 4c1(n)c2(n)

∥∥∥∆∗/i∥∥∥
2

(
1 + 2c2(n)

∥∥∥∆∗/i∥∥∥
2

( ω̄max,i

ν

))∥∥∥X̄/iJ
−1
/i (β̂/i)xi

∥∥∥2

4

4
≤ 4 ‖xi‖2

(
c21(n)c2(n)

ν

)(
1 +

2c1(n)c2(n)ω̄max,i

ν2
‖xi‖2

)∥∥∥X̄/iJ
−1
/i (β̂/i)xi

∥∥∥2

4

5
≤ 4 ‖xi‖2

(
c21(n)c2(n)

ν

)(
1 +

2c1(n)c2(n)(1 + ωmax,i)

ν2
‖xi‖2

)
︸ ︷︷ ︸

,C̄i

√∥∥∥X/iJ
−1
/i (β̂/i)xi

∥∥∥4

4
+
∥∥∥J−1

/i (β̂/i)xi

∥∥∥4

4
,

where

•
0
≤ is due (141).

•
1
≤ is due to Assumption 7, and Lemma 25, where ω̄max,i , σmax

(
X̄/iX̄

>
/i

)
.

•
2
≤ is due the fact that for any γ we have ‖γ‖24 ≤ ‖γ‖22,

•
3
≤ is due to Assumption 6 as illustrated below

∥∥∥γ−∆∗
/i
/i(β̂/i)

∥∥∥
2
≤

∥∥∥῭
/i(β̂/i −∆∗/i)− ῭

/i(β̂/i)
∥∥∥

2
+
∥∥∥λ(r̈(β̂/i −∆∗/i)− r̈(β̂/i))

∥∥∥
2

≤ 2c2(n)
∥∥∥∆∗/i∥∥∥

2
.

Likewise,

∥∥∥∥∫ 1

0

γ−(1−t)∆∗
/i
/i(β̂/i)dt

∥∥∥∥
2

≤
∫ 1

0

∥∥∥γ−(1−t)∆∗
/i
/i(β̂/i)

∥∥∥
2
dt

≤
∫ 1

0

∥∥∥῭
/i(β̂/i − (1− t)∆∗/i)− ῭

/i(β̂/i)
∥∥∥

2
dt

+

∫ 1

0

∥∥∥λ(r̈(β̂/i − (1− t)∆∗/i)− r̈(β̂/i))
∥∥∥

2
dt

≤ 2c2(n)
∥∥∥∆∗/i∥∥∥

2
. (142)
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Here we should emphasize that this is the main place in which we have used the smoothness of second derivatives

of the loss and regularizer in Assumption 6. 8

•
4
≤ is due to inequality (136), and Assumption 6.

•
5
≤ is due to (139), and

ω̄max,i = σmax

(
X̄/iX̄

>
/i

)
= σmax

(
X̄>/iX̄/i

)
= σmax


X/i

I

> X/i

I




= σmax

(
I +X>/iX/i

)
≤ 1 + σmax

(
X>/iX/i

)
= 1 + ωmax,i. (145)

The final result follows the basic inequality:
√
a2 + b2 ≤ |a|+ |b|.

Proof of Lemma 27. First, we prove

Pr
[
‖x‖∞ > ρmax

√
2(1 + c) log p

]
≤ 2

pc
(146)

as follows

Pr [‖x‖∞ > t] ≤
p∑
i=1

Pr [|xi| > t] ≤ 2

p∑
i=1

e
− t2

2Σii ≤ 2pe
− t2

2 maxi=1,...,p Σii ≤ 2elog p− t2

2ρmax
,

where t = ρmax

√
2(1 + c) log p and maxi=1,...,p Σii ≤ ρmax. Second, we prove

Pr
[
‖x‖24 > 2(1 + c)ρmax

√
p log p

]
≤ 2

pc
(147)

in the following way:

Pr

√√√√ p∑
i=1

xi4 > t

 = Pr

[
p∑
i=1

xi
4 > t2

]
≤ Pr

[
p max
i=1,...,p

xi
4 > t2

]

≤ Pr

[
‖x‖∞ >

(
t2

p

)1/4
]
≤ 2e

log p− t
2ρmax

√
p , (148)

where t = 2(1 + c)ρmax
√
p log p yields the desired result. Let z , J−1x and u , XJ−1x, then z is zero mean

Gaussian with covariance Σz = J−1ΣJ−1 and Σu = XJ−1ΣxJ
−1X>, leading to

σmax (Σz) = σmax

(
J−1ΣJ−1

)
≤ ρmax

ν2
min

, (149)

σmax (Σu) = σmax

(
XJ−1ΣJ−1X>

)
≤ ρmax

ν2
min

ωmax. (150)

8Note that by checking the derivation, it is clear that we can replace Assumption 6 with the following weaker assumptions:

c2(n) > sup
t∈[0,1]

‖῭/i((1− t)β̂/i + tβ̂)− ῭
/i(β̂)‖2∥∥∥β̂/i − β̂∥∥∥ζ

2

(143)

c2(n) > sup
t∈[0,1]

‖r̈((1− t)β̂/i + tβ̂)− r̈(β̂)‖2∥∥∥β̂/i − β̂∥∥∥ζ
2

(144)

for some ζ > 0, and still find an (weaker) upper bound for
∣∣∣x>i ∆∗/i − x>i ∆̂/i

∣∣∣ that converges to zero as n, p→∞.
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Therefore, we have

Pr

[∥∥J−1x
∥∥2

4
> 2(1 + c)

(
ρmax

ν2
min

)
√
p log p

]
≤ Pr

[∥∥J−1x
∥∥2

4
> 2(1 + c)σmax (Σz)

√
p log p

]
≤ 2

pc
,

and

Pr

[∥∥XJ−1x
∥∥2

4
> 2(1 + c)

(
ρmax

ν2
min

ωmax

)√
m logm

]
≤ Pr

[∥∥XJ−1x
∥∥2

4
> 2(1 + c)σmax (Σu)

√
m logm

]
≤ 2

mc
.

A.8 Proof of Corollary 1

To bound |LO−ALO| we use the following variable

κi ,

(
˙̀
i(β̂)

῭
i(β̂)

)
Hii

1−Hii
− x>i ∆∗/i

as follows:

|LO−ALO| =

∣∣∣∣∣ 1n
n∑
i=1

φ
(
yi,x

>
i β̂/i

)
− 1

n

n∑
i=1

φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)

῭
i(β̂)

)(
Hii

1−Hii

))∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

φ
(
yi,x

>
i β̂ + x>i ∆∗/i

)
− 1

n

n∑
i=1

φ

(
yi,x

>
i β̂ +

(
˙̀
i(β̂)

῭
i(β̂)

)(
Hii

1−Hii

))∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

φ̇
(
yi,x

>
i β̂/i + aiκi

)
κi

∣∣∣∣∣ . (151)

where a1, . . . , an denote n numbers between 0 and 1. Note that we have κi <
Co√
p with probability at least 1 −(

8n
(n−1)3 + 8n

p3 + 4ne−p
)
− qn − q̃n. Therefore, with at least the same probability we have

|LO−ALO| ≤ Co√
p
× max
i=1,...,n

sup
|bi|<Co√

p

∣∣∣φ̇(yi,x>i β̂/i + bi

)∣∣∣ . (152)

A.9 ALO and LO in the p fixed and large n regime

As we discussed so far, our main concern in this paper is high-dimensional settings in which n is proportional to p.

However, to present a complete picture about ALO, in this section, we study it in the classical asymptotic regime

where n is large and p is fixed. The assumptions presented here will be used throughout Section A.9 only. Let

β̂λn , arg min
β∈Rp

{ n∑
i=1

`(yi|x>i β) + λnr(β)
}
.

We also assume that the samples {(xi, yi)}ni=1 are independent and identically distributed, and that λn
n → λ∗. Define,

β∗ = arg min
β

E`(yi|x>i β) + λ∗r(β).
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Also, define

R , E
{

˙̀(y|x>β∗)φ̇(y,x>β∗)xx>
}
,

K , E
{

῭(y|x>β∗)xx> + λ∗diag[r̈(β∗)]
}
. (153)

For the sake of brevity, we follow [Stone, 1977] and make the following assumptions that enable us avoid repeating

standard asymptotic arguments that can be found elsewhere, e.g. in [Van der Vaart, 2000]:

(B.1) As n→∞ β̂λn
p→ β∗.

(B.2) supi ‖β̂λn/i − β∗‖2
p→ 0.

(B.3) Define ∆/i , β̂λn − β̂λn/i. Let b1, b2, . . . , bn and c1, c2, . . . , cn denote 2n numbers between [0, 1] that may

depend on the dataset D. Then, we assume that

X diag
[
῭
(
β̂λn + bi∆/i

)]
X> + λndiag[r̈(β̂λn + ci∆/i)]

n

p→K.

(B.4) Let a1, . . . , an denote n number between 0, 1 that may depend on dataset D. Then, assume that

1

n

n∑
i=1

xix
>
i

˙̀
i(β̂λn/i)φ̇

(
yi,x

>
i β̂λn + aix

>
i ∆/i

)
p→ R.

(B.5) Note that

Hii = x>i

(
X diag[῭(β̂λn)]X> + λdiag[r̈(β̂λn)]

)−1

xi ῭i(β̂λn).

Hence, we also assume that Hii
p→ 0.

(B.6) Let d1, d2, . . . , dn denote n numbers between [0, 1]. Note that we have already assumed that supiHii
p→ 0.

We further assume that

n∑
i=1

(
xix

>
i

n

)( ˙̀
i(β̂λn)

1−Hii

)
φ̇

(
yi,x

>
i β̂ + di

(
˙̀
i(β̂λn)

῭
i(β̂λn)

)(
Hii

1−Hii

))
p→ R.

It should be clear that all these assumptions can be proved under appropriate regularity conditions on the loss

function and the regularizer. Note that according to this theorem the error between ALO and LO is op(1/n).

Theorem 6. Under assumptions (B.1), (B.2), . . . , (B.6), we have n(ALOλn − LOλn)
p→ 0, as n→∞.

Proof. For notational simplicity instead of using λn we use λ in our formulas. However, the reader should note that

λ/n→ λ∗. First note that the gradient condition implies that X/i
˙̀
/i(β̂/i) + λṙ(β̂/i) = 0. Hence,

X ˙̀(β̂/i) + λṙ(β̂/i) = ˙̀
i(β̂/i)xi. (154)

Furthermore, we can use the fact that X ˙̀(β̂) + λṙ(β̂) = 0 to obtain

X ˙̀(β̂/i) + λṙ(β̂/i)−X ˙̀(β̂)− λṙ(β̂) = ˙̀
i(β̂/i)xi
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Since both the loss function and the regularizer are assumed to be twice continuously differentiable, we can use the

mean value theorem to simplify this expression to

(
X diag

[
῭
(
β̂ + bi∆/i

)]
X> + λ diag

[
r̈
(
β̂ + ci∆/i

)])
∆/i = ˙̀

i(β̂/i)xi, (155)

where all bis and cis are in [0, 1]. Furthermore, if φ is continuously differentiable, then we can again use the mean

value theorem to obtain

LO =
1

n

n∑
i=1

φ(yi,x
>
i β̂) +

1

n

n∑
i=1

x>i ∆/iφ̇
(
yi,x

>
i β̂ + aix

>
i ∆/i

)
=

1

n

n∑
i=1

φ(yi,x
>
i β̂)

+
1

n

n∑
i=1

x>i

(
X diag

[
῭
(
β̂ + bi∆/i

)]
X> + λ diag

[
r̈
(
β̂ + ci∆/i

)])−1

xi

× ˙̀
i(β̂/i)φ̇

(
yi,x

>
i β̂ + aix

>
i ∆/i

)
.

Hence,

LO− 1

n

n∑
i=1

φ(yi,x
>
i β̂)

=
1

n

n∑
i=1

trace

[(
X diag

[
῭
(
β̂ + bi∆/i

)]
X> + λ diag[r̈

(
β̂ + ci∆/i

)
]
)−1

xix
>
i

]
× ˙̀

i(β̂/i)φ̇
(
yi,x

>
i β̂ + aix

>
i ∆/i

)
.

It is then straightforward to use Assumptions (B.3) and (B.4) to claim that

n(LO− 1

n

n∑
i=1

φ(yi,x
>
i β̂))

p→ trace(K−1R).

Similarly, we can use the mean value theorem to argue that

ALO =
1

n

n∑
i=1

φ(yi,x
>
i β̂)

+
1

n

n∑
i=1

(
Hii

῭
i(β̂)

)
×

(
˙̀
i(β̂)

1−Hii

)
φ̇

(
yi,x

>
i β̂ + di

(
˙̀
i(β̂)

῭
i(β̂)

)(
Hii

1−Hii

))

=
1

n

n∑
i=1

φ(yi,x
>
i β̂) +

1

n
trace

[(
X diag[῭(β̂)]X> + λ diag[r̈(β̂)]

n

)−1

×
n∑
i=1

(
xix

>
i

n

)( ˙̀
i(β̂)

1−Hii

)
φ̇

(
yi,x

>
i β̂ + di

(
˙̀
i(β̂)

῭
i(β̂)

)(
Hii

1−Hii

))]

with |di| ≤ 1, i = 1, · · · , n. Again it is straightforward to use Assumptions (B.3) and (B.6) to show that

n(ALO− 1

n

n∑
i=1

φ(yi,x
>
i β̂))

p→ trace(K−1R). (156)

63


	Introduction
	Main objectives
	Relevant work
	Notation

	Approximate leave-one-out
	Twice differentiable losses and regularizers
	Nonsmooth regularizers

	Computational complexity and memory requirements of ALO
	Theoretical Results in High Dimensions
	Assumptions
	Main theoretical result

	Numerical Experiments
	Summary
	Simulations
	Linear regression with elastic-net penalty
	Logistic regression with LASSO penalty
	Poisson regression with elastic-net penalty
	Timing simulations

	Real Data
	Sonar data
	Spatial point process smoothing of grid cells: a neuroscience application


	Concluding Remarks
	Proofs (FOR ON-LINE PUBLICATION ONLY)
	Several concentration results for Gaussian random vectors and matrices
	Proof of Theorem 1 
	Roadmap of the proof
	Proof of "026B30D - "026B30D 2 0
	Bounds for regression coefficients in smoothed LASSO

	Proof of Theorem 2
	Derivation of (18)
	Roadmap of the derivations
	Basic properties of rq()
	Proof of Theorem 5

	Proofs of the Lemmas of Section 4
	Proof of Lemma 3 
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 4
	Proof of Lemma 7
	Proof of Lemma 2

	Proof of Theorem 3
	Proofs of lemmas 24, 25, 26, 27 and 12 
	Proof of Corollary 1
	ALO and LO in the p fixed and large n regime


