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A common analytical problem in neuroscience is the interpretation of
neural activity with respect to sensory input or behavioral output. This is typ-
ically achieved by regressing measured neural activity against known stim-
uli or behavioral variables to produce a “tuning function” for each neuron.
Unfortunately, because this approach handles neurons individually, it can-
not take advantage of simultaneous measurements from spatially adjacent
neurons that often have similar tuning properties. On the other hand, shar-
ing information between adjacent neurons can errantly degrade estimates of
tuning functions across space if there are sharp discontinuities in tuning be-
tween nearby neurons. In this paper, we develop a computationally efficient
block Gibbs sampler that effectively pools information between neurons to
denoise tuning function estimates while simultaneously preserving sharp dis-
continuities that might exist in the organization of tuning across space. This
method is fully Bayesian, and its computational cost per iteration scales sub-
quadratically with total parameter dimensionality. We demonstrate the robust-
ness and scalability of this approach by applying it to both real and synthetic
datasets. In particular, an application to data from the spinal cord illustrates
that the proposed methods can dramatically decrease the experimental time
required to accurately estimate tuning functions.

1. Introduction. Over the past five years, it has become possible to simul-
taneously record the activity of thousands of neurons at single-cell resolution
[Ahrens et al. (2013), Hamel et al. (2015), Portugues et al. (2014), Prevedel et
al. (2014)]. The high spatial and temporal resolution permitted by these new meth-
ods allows us to examine whether previously unexamined regions of the brain
might dynamically map sensory information across space in unappreciated ways.
However, the high dimensionality of these data also poses new computational chal-
lenges for statistical neuroscientists. Therefore, scalable and efficient methods for
extracting as much information as possible from these recordings must be devel-
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oped; in turn, improved analytical approaches that can extract information from,
for example, shorter experiments, may enable new dynamic closed-loop experi-
mental designs.

In many experimental settings, a key quantity of interest is the tuning func-
tion, a filter that relates known information about sensory input or behavioral
state to the activity of a neuron. For example, tuning functions permit measure-
ment of orientation selectivity in the visual cortex [Hubel and Wiesel (1968)],
allow us to relate movement direction to activity in the primary motor cortex
[Georgopoulos, Kettner and Schwartz (1986), Scott (2000)], and let us measure
the grid-like spatial sensitivity of neurons within the entorhinal cortex [Hafting
et al. (2005)]. This paper focuses on data-efficient methods for tuning function
estimation.

To be more concrete, let us first consider example experimental data where the
activity of n neurons is measured across d trials of identical lengths, with different
stimuli presented during each trial. We can then model the response yi ∈ R

d of
neuron i as a function of a stimulus matrix Xi ∈ R

d×m. Each row of Xi corre-
sponds to the stimulus projected onto neuron i at each of the d trials. In the sim-
plest case, the relationship between the unobserved tuning function βi ∈ R

m and
the observed activity yi at neuron i in response to stimulus Xi can be modeled
as2

(1) yi = Xiβi + εi where εi ∼ N
(
0, ν2

i σ 2I
)
.

The efficient statistical analysis and estimation of the unobserved tuning functions
{βi} given the noisy observations {yi} and the stimulus set {Xi} is the tuning
function estimation problem. In this setting, one standard approach is to use, for
example, maximum-likelihood estimation to estimate tuning functions one neuron
at a time [e.g., β i,ml := (X′

iXi )
−1X′

iyi].
However, this model neglects a common feature of many neural circuits: the

spatial clustering of neurons sharing a similar information processing function. For
example, there are maps of tone frequency across the cortical surface in the audi-
tory system [Issa et al. (2014)], visual orientation maps in both cortical [Hubel and
Wiesel (1962, 1968), Ohki et al. (2005)] and subcortical brain regions [Feinberg
and Meister (2014)], and maps respecting the spatial organization of the body (so-
matotopy) in the motor system [Bouchard et al. (2013), Leyton and Sherrington
(1917), Machado et al. (2015), Penfield and Rasmussen (1950), Romanes (1964)].
As a consequence, neurons in close proximity often have similar tuning func-
tions [see Swindale (2008), Wilson and Moore (2015) for recent reviews]. In each

2Empirical findings, to some degree, challenge the linear neural response to the stimulus, the con-
ditionally independent neural activity and the Gaussian noise assumptions. Nevertheless, numerous
studies have successfully used these simplifying assumptions to analyze neural data [see Doi et al.
(2012), Rieke et al. (1997) and references therein]. In the concluding Section 5, we discuss directions
for future work that allow the approach presented here to be extended to more general settings, for
example, correlated point process observations.
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of these cases, there are typically regions where this rule is violated and largely
smooth tuning maps are punctuated by jumps or discontinuities. Therefore, simply
smoothing in all cases will erode the precision of any sharp borders that might
exist. Ideally, we would use an approach to estimate {β i} that would smooth out
the tuning map more in areas where there is evidence from the data that nearby
tuning functions are similar, while letting the data “speak for itself” and applying
minimal smoothing in regions where adjacent neurons have tuning functions that
are very dissimilar.

In this paper, we propose a multivariate Bayesian extension of group lasso [Yuan
and Lin (2006)], generalized lasso [Tibshirani and Taylor (2011)], network lasso
[Hallac, Leskovec and Boyd (2015)], trend filtering on graphs [Wang et al. (2016)]
and total-variation (TV) regularization [Rudin, Osher and Fatemi (1992)]. Specif-
ically, we use the following improper prior:

β|λ,σ ∝ ∏
i∼j

(
λ

2σ

)m

exp
(
− λ

σ
‖βi − βj‖2

)
,(2)

where ‖u‖2 =
√∑m

i=1 u2
i and i ∼ j if two cells i and j are spatially nearby.3 This

prior allows for a flexible level of similarity between nearby tuning functions. For
clarity, we contrast against a ‖βi − βj‖2

2 based prior:

∏
i∼j

(
λ2

2πσ 2

)m/2
exp

(
− λ2

2σ 2 ‖βi − βj‖2
2

)
,

which penalizes large local differences quadratically. The prior defined in (2), on
the other hand, penalizes large differences linearly; intuitively, this prior encour-
ages nearby tuning functions to be similar while allowing for large occasional
breaks or outliers in the spatial map of the inferred tuning functions. This makes
the estimates much more robust to these occasional breaks.

The paper is organized as follows. Section 2 presents the full description of our
statistical model, including likelihood, priors and hyperpriors. Section 3 presents
an efficient block Gibbs sampler with discussions about its statistical and compu-
tational properties. Finally, Section 4 illustrates our robust and scalable Bayesian
analysis of simulated data from the visual cortex and real neural data obtained
from the spinal cord. We conclude in Section 5 with a discussion of related work
and possible extensions to our approach.

2. Bayesian inference. To complete the model introduced above, we place an
inverse Gamma prior on σ and {νi}i=1,...,n, and we place a Gamma prior on λ2,
both of which are fairly common choices in Bayesian inference [Park and Casella

3We will clearly define the notion of proximity i ∼ j at the end of Section 2.
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(2008)]. These choices lead to the likelihood, priors and hyperpriors presented
below:

likelihood, yi |βi , σ, νi ∼
(

1

2πν2
i σ 2

)d/2
exp

(
− 1

2ν2
i σ 2

‖yi − Xiβi‖2
2

)
,

prior, β|λ,σ ∼ ∏
i∼j

(
λ

2σ

)m

exp
(
− λ

σ
‖βi − βj‖2

)

and hyperpriors,

σ 2 ∼ inverse-Gamma(κ, ε) = εκ

�(κ)

(
σ 2)−κ−1

e−ε/σ 2
,

λ2 ∼ Gamma(r, δ) = δr

�(r)

(
λ2)r−1

e−δλ2
,(3)

ν2
i ∼ inverse-Gamma(κ, ε) = εκ

�(κ)

(
ν2
i

)−κ−1
e−ε/ν2

i .

The well-known representation [Andrews and Mallows (1974), Casella et al.
(2010), Eltoft, Kim and Lee (2006), West (1987)] of the Laplace prior as a scale
mixture of Normals,(

λ

2σ

)m

exp
(
− λ

σ
‖βi − βj‖2

)

= C

∫ ∞
0

(
1

2πσ 2τ 2
ij

)m/2

× exp
(
−‖βi − βj‖2

2

2σ 2τ 2
ij

)
(λ2

2 )
m+1

2

�(m+1
2 )

(
τ 2
ij

)m+1
2 −1

e
− λ2

2 τ 2
ij dτ 2

ij︸ ︷︷ ︸
τ 2
ij∼Gamma(m+1

2 , λ2
2 )

,

[where C = π
m−1

2 �(m+1
2 )] allows us to formulate our prior (2) in a hierarchical

manner:

τ 2
ij |λ2 ∼ (λ2

2 )
m+1

2

�(m+1
2 )

(
τ 2
ij

)m+1
2 −1

e
− λ2

2 τ 2
ij for all i ∼ j,(4)

β|{τ 2
ij

}
, σ 2 ∼ exp

(
−β ′D′�Dβ

2σ 2

)
,(5)

where (using ⊗ as the Kronecker product)

D = Ds ⊗ Im and � = �s ⊗ Im,

�s = diag
(
. . . ,

1

τ 2
ij

, . . .

)
∈R

p×p
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and Ds ∈ R
p×n is a sparse matrix such that each row accommodates a +1 and

−1, corresponding to i ∼ j . We let p denote the number of edges in the proximity
network. Note that

β ′D′�Dβ = ∑
i∼j

‖βi − βj‖2
2

τ 2
ij

.

In light of the hierarchical representation, illustrated in equations (4), (5), the prior
defined in (2) can be viewed as an improper Gaussian mixture model; β is Gaus-
sian given {. . . , τ 2

ij , . . .}, and the τ 2
ij s come from a common ensemble. This prior

favors spatial smoothness while allowing the amount of smoothness to be variable
and adapt to the data. As we will discuss in Section 3, posterior samples of τ 2

ij tend
to be smaller in smooth areas than in regions with discontinuities or outliers.

For each edge in the proximity network, and each corresponding row in Ds ,
there is a unique pair of nodes i and j that are spatially “nearby,” that is, i ∼ j .
We found that considering the four horizontally and vertically nearby nodes as
neighbors, for nodes that lie on a two-dimensional regular lattice, allows us to effi-
ciently estimate tuning functions without contamination from measurement noise
or bias from oversmoothing; see Section 4.1.1 for an illustrative example. As for
nodes that lie on an irregular grid, we compute the sample mean μ and sample
covariance C of the locations, and then whiten the location vectors vi ; that is,
vi,whitened = C−1/2(vi − μ). We found that connecting each node to its k-nearest-
neighbors (within a maximum distance r) in the whitened space works well in
practice; see Section 4.2.1 for an illustrative example with k = 1 and r = 5.

Extending the robust prior presented in equation (2), which is based on the
simple local difference ‖βi −βj‖2 for i ∼ j , to a robust prior based on any generic
‖·‖2 measure of local roughness is easy; we only need to appropriately modify Ds .
For example, if y1, . . . ,yn are equidistant temporal samples, then the following
robust prior

β|λ,σ ∼
n−2∏
i=1

(
λ

2σ

)m

exp
(
− λ

σ
‖2β i − βi+1 − βi−1‖2

)

reflects our a priori belief that β1, . . . ,βn are (approximately) piecewise linear
[Kim et al. (2009)]. In this case, Ds is a tridiagonal matrix with 2 on the diagonal
and −1 on the off-diagonals. As another example, let the matrix Ds be equal to the
discrete Laplacian operator; [Ds]ii equals the number of edges attached to node i,
and if i ∼ j , then [Ds]ij = −1, otherwise its zero. The discrete Laplacian operator
(Laplacian matrix), which is an approximation to the continuous Laplace operator,
is commonly used in the spatial smoothing literature to impose a roughness penalty
[Wahba (1990)]. Our robust prior based on the discrete Laplacian operator is as
follows:

β|λ,σ ∼
n∏

i=1

(
λ

2σ

)m

exp
(
− λ

σ

∥∥∥∥∑
j∼i

(βi − βj )

∥∥∥∥
2

)
,
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which given the appropriate matrix Ds can easily be formulated in the hierarchi-
cal manner of equation (5). On regular grids, this prior is based only on the four
(horizontal and vertical) neighbors, but better approximations to the the continu-
ous Laplace operator based on more neighbors is straightforward and within the
scope of our scalable block Gibbs sampler presented in Section 3.

Finally, note that the prior defined in (2) is not a proper probability distribution
because it can not be normalized to one. However, in most cases the posterior
distribution will still be integrable even if we use such an improper prior [Gelman
et al. (2003)]. As we see later in Section 3, all the conditional distributions needed
for block Gibbs sampling are proper. Furthermore, the joint posterior inherits the
unimodality in β and σ given {νi}i=1,...,n and λ from the Bayesian Lasso [Park
and Casella (2008)], aiding in the mixing of the Markov chain sampling methods
employed here; see the Appendix.

2.1. Relationship to network lasso. In related recent independent work,
Hallac, Leskovec and Boyd (2015) present an algorithm based on the alternat-
ing direction method of multipliers [Boyd et al. (2011)] to solve the network lasso
convex optimization problem,

(6) minimize
βi∈Rm for i=1,...,n

n∑
i=1

‖yi − Xiβi‖2
2 + γ

∑
i∼j

‖βi − βj‖2,

in a distributed and scalable manner. The parameter γ scales the edge penalty rel-
ative to the node objectives (and can be tuned using cross-validation). Similar to
our formulation (Section 2), the network lasso uses an edge cost that is a sum of
norms of differences of the adjacent node variables, leading to a setting that al-
lows for robust smoothing within clusters on graphs. The optimization approach
of Hallac, Leskovec and Boyd (2015) leads to fast computation but sacrifices the
quantification of posterior uncertainty (which is in turn critical for closed-loop ex-
perimental design, for example, deciding which neurons should be sampled more
frequently to reduce posterior uncertainty) provided by the method proposed here.
A Bayesian version of the network lasso is a special case of our robust Bayesian
formulation by setting the variable variance parameters equal to one, that is, ν2

i = 1
for i = 1, . . . , n. As we will see in the next example, heteroscedastic noise chal-
lenges the posterior mean estimate’s robustness.

2.2. Model illustration. In this section, we show that posterior means based
on the prior of equation (3) on {νi}i=1,...,n are robust to neuron-dependent noise
variance. Our numerical experiments for heterogenous noise power show that a
model with a homogeneous noise assumption will misinterpret noise as a signal,
depicted in Figure 1. Comparisons with the network lasso are presented as well. We
postpone the details concerning the block Gibbs sampler presented in this paper to
Section 3.
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FIG. 1. Heterogenous noise example. The Bayesian network lasso posterior mean estimate overfits
in the region of higher observation noise. The robust Bayesian formulation is less prone to misiden-
tifying heterogenous noise as a signal. The network lasso tends to cluster high frequency variations
into piecewise-constant estimates. Note that in the bottom right panel, the Bayesian network lasso
looks similar to the noisy observation in the upper left panel; that is, this estimator is overfitting
here. The nonrobust Bayesian network lasso formulation does not allow various degrees of noise
variability to be estimated from the data, and, hence, in this example it interprets the change in noise
variance as a signal.

The signal and heterogeneous noise models are as follows:

yi = βi + εi, where βi =
√

i

n

(
1 − i

n

)
sin

(
11π

i4

n4

)
,

εi ∼ N
(
0, σ 2

i

)
, with σi =

⎧⎪⎨
⎪⎩

0.1, if
i

n
∈ [0,0.5) ∪ (0.6,1],

1, if
i

n
∈ [0.5,0.6].

The following hyperpriors were used for the posterior means of the robust
Bayesian model:

σ 2 ∼ inverse-Gamma(κ = 0, ε = 0),

λ2 ∼ Gamma(r = 0.0001, δ = 0.001),

ν2
i ∼ inverse-Gamma(κ = 3, ε = 2).

The hyperpriors of λ2 and σ 2 are relatively flat. For ν2
i , we set the hyperparameters

such that we have the unit prior mean and prior variance. The Bayesian network
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lasso is only different from the robust Bayesian formulation in that it assumes a
constant noise variance, that is, ν2

i = 1 for i = 1, . . . , n.
The Bayesian network lasso and robust Bayesian posterior mean estimates are

based on 10,000 consecutive iterations of the Gibbs sampler (after 5000 burn-in
iterations), as discussed in Section 3. The network lasso estimate is the solution to
the convex optimization problem equation (6) where the tuning parameter γ is set
using 10-fold cross-validation. Note that the network lasso estimate corresponds
to the mode of the posterior distribution of the Bayesian network lasso conditioned
on σ and λ.

For the sake of comparison, we also present numerical results for a homo-
geneous noise model. Here, the signal β is the same, but the noise variance is
σi = 0.33 for i = 1, . . . , n. This particular choice of σi was made to guarantee that
the signal-to-noise ratio is equal to that of the heterogeneous noise model. As for
the priors, they remain the same. As expected, the Bayesian network lasso and
robust Bayesian posterior means are similar, as depicted in Figure 2.

Figures 1 and 2 illustrate that if the noise power is constant, then the robust
Bayesian and Bayesian network lasso posterior means are similar. On the other
hand, if the noise power is not constant, then the robust Bayesian posterior mean
detects the nonuniform noise power and adapts to it, while the Bayesian network
lasso posterior mean misinterprets noise as signal and overfits. Note that in general
local differences are sparsened by the network lasso MAP estimate, but are instead

FIG. 2. Homogeneous noise example. The posterior means of the Bayesian network lasso and
our robust Bayesian are very similar. This is expected given the homogeneity of noise power. The
network lasso suffers from the staircase effect, that is, the denoised signal is not smooth but piecewise
constant.
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FIG. 3. Tukey boxplots comparing model
√

MSE := n−1/2‖β − β̂model‖2 under homogeneous
and heterogeneous noise. To make this comparison meaningful, signal-to-noise ratios are the same
for both noise models. The boxplots are generated by simulating 100 replications of each model. For
homogeneous noise, the Bayesian network lasso and robust Bayesian perform similarly. However,
when noise is heterogeneous, the Bayesian network lasso tends to overfit, as illustrated in Figure 1.
In terms of MSE, the network lasso is more robust to noise variations than its Bayesian counterpart,
but the robust Bayesian performs slightly better.

shrunk by the posterior mean of the Bayesian network lasso.4 More importantly,
in this example, the Bayesian and non-Bayesian network lasso estimate λ in very
different ways (Gibbs sampling and cross-validation, respectively), which lead to
different levels of penalization here. Repeated simulations presented in Figure 3
further confirm these observations.

3. Scalable block Gibbs sampling. We will now introduce some vector and
matrix notation before we describe our Gibbs sampling approach to inference.
First, we introduce the following variables:

y
i
:= yi

νi

, Xi := Xi

νi

.(7)

We also let X ∈ R
nd×nm stand for the rectangular blockwise-diagonal matrix

diag(. . . ,Xi , . . .). Moreover, we let β , y and X′y stand for the column-wise con-
catenation (for i = 1, . . . , n) of βi , y

i
and X′

iyi
, respectively. X′X is then the

4In the lasso regression problem, likewise differences exist between MAP estimates and poste-
rior estimates [Park and Casella (2008)]. To be concrete, the posterior mean of the Bayesian lasso
generically has no nonzero terms, unlike the standard MAP lasso estimate.
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blockwise-diagonal matrix diag(. . . ,X′
iXi , . . .) ∈ R

nm×nm. Finally, recall that p

stands for the number of edges in the proximity network.
Our efficient Gibbs sampler and the full conditional distributions of β , σ 2, {ν2

i },
λ and {τ 2

ij } can then be formulated as follows:

Step 1. The local smoothing parameters {τij }i∼j are conditionally independent,
with

τ 2
ij |β,σ 2, λ2 ∼

(
1

τ 2
ij

)1/2
exp

(
−‖β i − βj‖2

2σ 2τ 2
ij

− λ2

2
τ 2
ij

)
.

Step 2. The full conditional for β is multivariate normal with mean P −1X′y and
covariance σ 2P −1, where

P = X′X + D′�D.

Step 3. σ 2 ∼ inverse-Gamma(κ ′,ε′) with

κ ′ = κ + (pm + nd)

2
, and ε′ = ε + 1

2
‖y − Xβ‖2 + 1

2

∥∥�1/2Dβ
∥∥2

.

Step 4. λ2 ∼ Gamma(r ′, δ′) with

r ′ = r + p(m + 1)/2, and δ′ = δ + 1

2

∑
i∼j

τ 2
ij .

Step 5. ν2
i ∼ inverse-Gamma(κ′, ε′) with

κ
′ = κ + d

2
, and ε′ = ε + 1

2σ 2 ‖yi − Xiβi‖2.

Note that in step 1, the conditional distribution can be rewritten as

(8)
1

τ 2
ij

∣∣∣∣β, σ 2, λ ∼ inverse-Gaussian
(
μ′, λ′)

with

μ′ = λσ

‖βi − βj‖2
, λ′ = λ2,

in the parametrization of the inverse-Gaussian density given by

inverse-Gaussian
(
μ′, λ′) ∼ f (x) =

√
λ′
2π

x−3/2 exp
{
−λ′(x − μ′)2

2(μ′)2x

}
.

Moreover, the conditional expectation of 1
τ 2
ij

[using its inverse-Gaussian density

in (8)] is equal to λσ
‖βi−βj‖2

. This makes the iterative Gibbs sampler above intu-

itively appealing; if the local difference is significantly larger than typical noise
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(i.e., ‖βi − βj‖2 � λσ ), then there is information in the difference, and therefore
minimal smoothing is applied in order to preserve that difference. On the other
hand, if the local difference is small, then this difference is likely to be due to noise,
and therefore local smoothing will reduce the noise. In other words, the robust
Bayesian formulation presented in this paper functions as an adaptive smoother
where samples will be less smooth in regions marked with statistically significant
local differences, and vice versa.

Furthermore, in step 2, the conditional distribution of β depends on the obser-
vation y and the local smoothing parameters τ . A large 1/τ 2

ij causes the samples
of βi and βj to be more similar to each other than their respective ML estimates
βi,ml and βj,ml [where βi,ml := (X′

iXi )
−1X′

iyi ]. In contrast, if 1/τ 2
ij is small,

then the conditional samples of βi and βj typically revert to their respective ML
estimates, plus block-independent noise. Also, note that we can reduce the vari-
ance of the posterior mean’s estimate of β by Rao–Blackwellization: instead of
estimating the posterior mean of β from the samples obtained in step 2, the Rao–
Blackwellized estimate of the posterior mean is computed by averaging (over all
iterations) P −1X′y (the conditional mean of β), which can lead to significant im-
provements over naive Gibbs.

Finally, although unnecessary in our approach, the fully Bayesian sampling of
λ in step 4 can be replaced with an empirical Bayes method. The difficulty in
computing the marginal likelihood of λ, which requires a high-dimensional inte-
gration, can be avoided with the aid of the EM/Gibbs algorithm [Casella (2001)].
Specifically, iteration k of the EM algorithm

λ(k+1) = argmaxλ E
[
logp

(
β, τ 2, λ|y)|y, λ(k)]

simplifies to

λ(k+1) =
√√√√ p(m + 1)∑

i∼j E[τ 2
ij |y, λ(k)] ,(9)

which can be approximated by replacing conditional expectations with sample av-
erages from step 1. The empirical Bayes approach gives consistent results with the
fully Bayesian setting. The expectation of the conditional Gamma distribution of
λ2 in step 4,

E
[
λ2|y, τ

] = 2r + p(m + 1)

2δ +∑
i∼j τ 2

ij

,

is similar to the EM/Gibbs update (9). In our experience, both approaches give
similar results on high-dimensional data.
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3.1. Computational cost. The conditional independence of the local smooth-
ing parameters {τij }i∼j given β and σ amounts to a computational cost of sam-
pling these variables that scales linearly with their size: O(pm). Similarly, the
cost of sampling σ 2 given β and{τij }i∼j is due to computing

∑n
i=1 ‖yi − Xiβi‖2,∑n

i=1 ‖y
i
− Xiβi‖2 and ‖�1/2Dβ‖2 which are, respectively, O(ndm), O(ndm)

and O(pm), amounting to a total cost of O((nd + p)m).
The conditional distribution of β given {τij }i∼j is multivariate Gaussian with

mean P −1X′y and covariance σ 2P −1, whose computational feasibility rests pri-
marily on the ability to solve the equation

Pw = b(10)

as a function of the unknown vector w for P = X′X + D′�D. This is because if
ε1, ε2 ∼ N (0, I ), then

(11) P −1X′y + σP −1[X′ε1 + D′�1/2ε2
]

is a Gaussian random vector with mean P −1X′y and covariance σ 2P −1. Simi-
lar approaches for the efficient realization of Gaussian fields based on optimizing
a randomly perturbed cost function (log posterior) were studied in Bardsley et
al. (2014), Gilavert, Moussaoui and Idier (2015), Hoffman (2009), Hoffman and
Ribak (1991), Papandreou and Yuille (2010). In our case, the randomly perturbed
cost function is

fε1,ε2(θ) := (
Dθ − σ�−1/2ε2

)′
�
(
Dθ − σ�−1/2ε2

)
+ (y + σε1 − Xθ)′(y + σε1 − Xθ),

in which case it is easy to see that arg maxθ fε1,ε2(θ) is given by equation (11).
Standard methods for computing P −1b require cubic time and quadratic space,

rendering them impractical for high-dimensional applications. A natural idea for
reducing the computational burden involves exploiting the fact that P is composed
of a block-diagonal matrix X′X and a sparse matrix D′�D. For instance, matrices
based on discrete Laplace operators on regular grids lend themselves well to multi-
grid algorithms which have linear time complexity [see Brandt (1977), Goodman
and Sokal (1989), Papandreou and Yuille (2010) and Section 19.6 of Press et al.
(1992)]. Even standard methods for solving linear equations involving sparse ma-
trices (as implemented, for example, in MATLAB’s P \ b call) are quite efficient
here, requiring sub-quadratic time [Rue and Held (2005)]. This sub-quadratic scal-
ing requires that a good ordering is found to minimize fill-in during the forward
sweep of the Gaussian elimination algorithm; code to find such a good ordering
(via “approximate minimum degree” algorithms [Davis (2006)]) is built into the
MATLAB call P \ b when P is represented as a sparse matrix. As we will see in
Section 4.1.1, exploiting these efficient linear algebra techniques permits sampling
from a high-dimensional (>106) surface defined on a regular lattice in just a few
seconds using MATLAB on a 2.53 GHz MacBook Pro.
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4. Motivating neuroscience applications. Here we will discuss the applica-
tion of our robust Bayesian analysis approach toward the analysis of both synthetic
and real neural tuning maps. In both cases, our new algorithm permits the robust
estimation of neural tuning with higher fidelity and less data than alternative ap-
proaches.

4.1. Synthetic data.

4.1.1. Estimating orientation preference maps. We will first apply our algo-
rithm to synthetic data modeled after experiments where an animal is presented
with a visual stimulus and the neural activity in the primary visual cortex (also
known as V1) is simultaneously recorded. V1 is the first stage of cortical visual
information processing and includes neurons that selectively respond to sinusoidal
grating stimuli that are oriented in specific directions [Hubel and Wiesel (1962)].
Neurons with such response properties are called simple cells. See Figure 4 for an
illustrative example of the recorded neural activity while a bar of light is moved
at different angles [Dayan and Abbott (2001), Henry, Dreher and Bishop (1974),

FIG. 4. Electrophysiological recordings from a single neuron in the primary visual cortex of a
monkey. A moving bar of light was projected onto the receptive field of the cell at different angles.
In the diagrams on the left, the receptive field is shown as a dashed rectangle and the light source
as a superimposed black bar. The angle of the dashed rectangle indicates the preferred orientation.
For each bar (stimulus) orientation, the neural response was recorded. The voltage traces in the
middle column show the electrophysiological recordings corresponding to the stimulus orientation
of that row. Note that the neural response depends on the stimulus orientation; it increases as the
bar and the preferred orientation become more aligned. Clearly, the bar orientation of the middle
row evoked the largest number of action potentials. The graph on the right shows average number of
action potentials per second (neural response) versus the angle of the bar. This graph indicates how
the neural response depends on the orientation of the light bar. The data have been fit by a Gaussian
function. [Data is from Henry, Dreher and Bishop (1974), Hubel and Wiesel (1968), and figures are
adapted from Dayan and Abbott (2001), Wandell (1995).]
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Hubel and Wiesel (1968), Wandell (1995)]. As can be seen in the figure, action po-
tential firing of the simple cell depends on the angle of orientation of the stimulus.

To capture the essential characteristics of simple cells in the visual cortex,
we will use the following model. The response of cell i ∈ {1,2, . . . , n} to a
grating stimulus with orientation φ� depends on the preferred orientation θi ∈
(−90◦,+90◦] and the tuning strength ri ∈ R

+ of that cell. The number of cells
is n, and the number of trials (with differently oriented stimuli) is d . Formally
speaking, in the simplest linear model, during the �th trial, the noisy measurement
yi,� ∈ R at neuron i in response to a stimulus with orientation φ� can be written as
[Macke et al. (2010, 2011), Swindale (1998)]

yi,�|βi ,x�, σ
2 ∼ N

(
β ′

ix�, σ
2), i = 1, . . . , n and � = 1, . . . , d,

where βi := ri[cos θi sin θi]′ is related to θi (preferred orientation) and ri (tuning
strength) as follows:

θi := arctan
[
β2,i

β1,i

]
, ri :=

√
β2

2,i + β2
1,i ,

and x� = [cosφ� sinφ�]′ stands for the grating stimulus with orientation φ�. Writ-
ing the stimulus set {x�}�=1,...,d in matrix notation

Xø :=

⎡
⎢⎢⎣

...

x′
�
...

⎤
⎥⎥⎦

d×2

allows us to compactly rewrite the neural response yi ∈ R
d as

(12) yi |Xø,β i , σ
2 ∼N

(
Xø,β i , σ

2I
)

i = 1, . . . , n.

Note that all neurons respond to the same particular grating stimulus, namely Xø,
though, due to different preferred orientations, not all neurons respond similarly.

In this example, the noise variances are set to be equal, that is, νi = 1 for i =
1, . . . , n. As for the Gibbs sampler, we skip step 5, and substitute νi = 1 in all other
steps. In the next section, we present a real data example, where {νi} is estimated
using step 5 of our Gibbs sampler.

Drawing conclusions regarding the cortical circuitry underlying orientation
maps, their formation during visual development, and across evolution, has re-
cently been the subject of numerous studies [Kaschube et al. (2010), Keil et al.
(2012), Reichl, Löwel and Wolf (2009), Schnabel et al. (2007)]. For instance,
Kaschube et al. (2010) argued that evolutionary history (instead of ecological or
developmental constraints) underlies the formation of qualitatively similar pin-
wheel distributions observed in the visual cortex of disparate mammalian taxa.
Consequently, the estimation of orientation maps without contamination from
measurement noise or bias from overs-smoothing will help to clarify important
questions about evolution and information processing in the visual cortex.
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We therefore generated synthetic tuning maps by extracting the phase of su-
perpositions of complex plane waves [see Section 2.4 of the Supplement of
Kaschube et al. (2010) for details]. In our simulations, for clarity we assume
β i = (cos θi, sin θi)

′, and therefore ri = 1, which means tuning strengths are con-
stant across all neurons. The top left panels of Figure 5 and Figure 6 show the an-
gular components {θi} and tuning strengths ri = 1 of the resulting map. It is well
known that in some species the preferred orientations {θi} are arranged around
singularities, called pinwheel centers [Ohki et al. (2005, 2006)]. Around each sin-
gularity, the preferred orientations {θi} are circularly arranged, resembling a spi-
ral staircase. If we closely examine the top left panel of Figure 5, it is evident
that around pinwheel centers the preferred orientations {θi} are descending, ei-
ther clockwise or counterclockwise from −90◦ to +90◦. Experimentally measured

FIG. 5. Analysis of a synthetic orientation tuning map. θ is a synthetic 710 × 710 orientation pref-
erence map [see Section 2.4 of the Supplement of Kaschube et al. (2010) for details]. Each pixel is a
neuron, and θi ∈ (−90◦,+90◦] (the preferred orientation of neuron i) is given by arctan(β2,i/β1,i ).
Likewise, the robust Bayesian θ̂ , smoothed θsm and maximum-likelihood θml estimates of preferred
orientations are inverse trigonometric functions of β̂ , βsm and βml, respectively. The Bayesian esti-
mate θ̂ of preferred orientations is less noisy than θml and more robust than θsm; see also Figure 7 for
a zoomed-in view. The β̂ estimate of posterior expectations is based on 10,000 consecutive iterations
of the Gibbs sampler (after 500 burn-in iterations).
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FIG. 6. True tuning strengths {ri}, the estimated tuning strengths {ri,ml, ri,sm, r̂i} and posterior
means of local smoothing parameters {τij }i∼j . Each pixel is a neuron, and its (estimated) tuning

strength is given by the length of its (estimated) βi , for example, ri = ‖βi‖2, r̂i = ‖β̂i‖2, etc. The
proximity network is a 710×710 regular grid with edges between a node and its four (horizontal and
vertical) neighbors. The local smoothing parameters defined on edges among vertical and horizontal
edges are designated by {τy} and {τx}, respectively. The rsm (smoothed) and r̂ (robust Bayesian) tun-
ing strength maps underestimate the true value at points where posterior means of local smoothing
parameters {τx, τy} take significant values. These points correspond to sharp breaks in the orienta-
tion preference map θ (as illustrated in Figure 5), where local averaging of significantly differently
oriented tuning functions leads to a downward bias in estimated tuning strengths.

maps obtained from cats, primates [Kaschube et al. (2010)] and our synthetically
generated data all share this important feature.

We simulated the neural responses of each cell to twenty differently oriented
grating stimuli by sampling responses according to equation (12) with σ = 0.4.
The orientations φ� (for � = 1, . . . ,20) were randomly and uniformly sampled
from (−90◦,+90◦]. Our main objective is to estimate (from neural responses {yi}
and stimuli Xø) the preferred orientations {θi} and tuning strengths {ri}. Ordinary
linear regression yields maximum likelihood estimates

β i,ml = (
X′

øXø
)−1

X′
øyi,

θi,ml = arctan
(

β2,i,ml

β1,i,ml

)
,(13)

ri,ml = ‖β i,ml‖2.
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FIG. 7. A 40 × 40 zoomed-in view of preferred orientations {θi} and tuning strengths {ri}, and
their estimates. [The center of this map is pixel (241,60) in Figure 5 and Figure 6.] The smoothed
rsm tuning strength map underestimates the true tuning strength at sharp breaks in the orientation
preference map θ . This bias is less severe for the Bayesian estimate r̂ because the robust prior applies
less local smoothing at sharp breaks (as illustrated in Figure 6). Similarly, θ̂ provides much more
accurate angular estimates than θsm.

The maximum likelihood estimates θi,ml and ri,ml are depicted in Figures 5, 6
and 7. The fine structure around pinwheel centers and the border between clustered
preferred orientations is disordered.

We also computed the smoothed estimate βsm based on the following smoothing
prior,

p(β|γ ) ∝ exp
(
−γ

2

∑
i∼j

‖βi − βj‖2
2

)

∝ exp
(
−γ

2
β ′D′Dβ

)
,

and the likelihood in (12),

p(y|β) ∝ exp
(
− 1

2σ 2 ‖y − Xβ‖2
2

)
,

leading to the posterior expectation of β:

(14) βsm(γ ) := (
X′X + γD′D

)−1
X′y,

where X′X = In×n ⊗ X′
øXø and X′y = (. . . ,X′

øyi , . . .). The smoothed estimate
βsm is based on a Gaussian prior that penalizes large local differences quadrati-
cally. [In contrast, the robust prior defined in equation (2) penalizes large differ-
ences linearly.] The amount of smoothing is dictated by γ ; large values of γ lead
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to over-smoothing and small values of γ lead to under-smoothing. In this example,
the true β is known; therefore, for the sake of finding the best achievable smooth-
ing performance, we selected γ = 2.15 (using a grid search), which minimizes
‖βsm(γ ) − β‖2.

The proximity network that we used in this example was defined using the edges
between every node and its four nearest (horizontal and vertical) neighbors. The

smoothed estimates θi,sm := arctan(
β̂2,i,sm

β̂1,i,sm
) and ri,sm := ‖β i,sm‖2 are depicted in

Figures 5, 6 and 7. In spite of the observation that θsm is less noisy than θml, there
are still areas where the fine structure around pinwheel centers and the border
between clustered preferred orientations is disordered.

Figure 6 shows that rsm is typically close to the true value of one, except for
in neurons that lie at the border between regions with different orientation prefer-
ences. This is due to the fact that at regions that mark the border, tuning functions
(and their noisy observations) point at significantly different directions, and there-
fore local averaging decreases the length of the average value. On the other hand,
in smooth regions where vectors are pointing in roughly the same direction, local
averaging preserves vector length.

The ability of our method to recover orientation preference maps from noisy
recordings is shown in Figures 5, 6 and 7. To use the Bayesian formulation of equa-
tion (2), we substituted a fixed Xø for all Xi . For λ2, a Gamma(r = 1, δ = 1) was
used based on the understanding that a priori 1

p

∑
i∼j ‖βi − βj‖2 should be O(1).

As for σ 2, the improper inverse-Gamma(κ ′ = 0, ε′ = 0), that is, π(σ 2) ∝ 1/σ 2,
was used. {β̂i}, namely, the posterior expectation of {β i}, is based on 10,000 sam-
ples from our efficient Gibbs sampler (after 500 burn-in iterations). The estimates
σ̂ = 0.4066 ± 0.0001 and λ̂ = 11.13 ± 0.01 (i.e., the mean ± standard deviation)
are based on the 10,000 samples. The following estimates of the preferred orienta-
tions and tuning strengths,

θ̂i := arctan
(

β̂2,i

β̂1,i

)
,

r̂i := ‖β̂i‖2,

are depicted in Figures 5 and 6. The posterior mean estimates of τx and τy (de-
picted in Figure 6) tend to be larger for neurons on the border of regions with
similar preferred orientations {θi} (and less so around pinwheel centers), leading
to minimal local smoothing for those pixels. Figure 6 shows that the Bayesian es-
timate r̂ (like rsm) underestimates the tuning strength for points that mark the bor-
der between different orientation preferences. In comparison to rsm, as illustrated
in the zoomed-in maps of Figure 7, this problem is less severe for the Bayesian
estimate r̂ because of the robust prior that decreases the strength of local aver-
aging by increasing the local smoothing parameters {τij } in regions marked with
discontinuities.
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FIG. 8. The sample path of 3 randomly selected pixels (top), σ (middle) and λ (bottom). The last
10,000 (after 500 burn-in) samples (left) and the first 50 samples (right).

As we can see in Figure 7, the sharp border between similar orientation pref-
erences is not over-smoothed while the noise among nearby neurons with similar
orientation preferences is reduced. As a consequence of robustness, information is
shared less among cells that lie at the border, but for cells that lie inside regions
with smoothly varying preferred orientation, local smoothing is stronger. More-
over, in this example the chain appears to mix well (see Figure 8), and the Gibbs
sampler is computationally efficient, requiring just a few seconds on a laptop (per
iteration) to sample a surface described by >106 parameters.

Finally, let us add that it is well known that the semiregular, smoothly varying ar-
rangement (with local discontinuities) of orientation preference maps is not a gen-
eral feature of cortical architecture [Van Hooser et al. (2005)]. In fact, numerous
electrophysiological and imaging studies [Girman, Sauvé and Lund (1999), Metin,
Godement and Imbert (1988), Murphy and Berman (1979), Tiao and Blakemore
(1976)] have found that orientation selective neurons in the visual cortex of many
rodents are randomly arranged. A question that arises is whether the model would
over-smooth if the neurons are not arranged smoothly in terms of their maps. In
order to answer this question, we generated a randomly arranged orientation pref-
erence map, and applied our algorithm to the simulated neural activity in response
to the same grating stimuli Xø used above. We also used the same noise variance
(σ = 0.4) and the same priors for λ,σ and {β}i=1,...,n. Results are depicted in
Figure 9. Since the preferred orientations lack spatial organization, the Bayesian
estimate θ̂ of preferred orientations reverts to its respective θml.
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FIG. 9. A 40 × 40 zoomed-in view of the 710 × 710 (not shown) randomly arranged preferred
orientations {θi} and tuning strengths {ri}, and their estimates. The orientation at each pixel was
randomly drawn from a uniform distribution on (−90◦,+90◦]. Since the preferred orientations lack
spatial organization, the Bayesian estimate θ̂ of preferred orientations reverts to its respective θml.
The posterior estimates are based on 10,000 consecutive iterations of the Gibbs sampler (after 500
burn-in iterations).

4.2. Real data.

4.2.1. Phasic tuning in motor neurons. We next tested the method’s perfor-
mance on real neural imaging data obtained from an isolated mouse spinal cord
preparation [schematized in Figure 10(a)]. In these data, the fluorescent activ-
ity sensor GCaMP3 was expressed in motor neurons that innervate leg muscles.
After application of a cocktail of rhythmogenic drugs, all motor neurons in the
preparation fire in a periodic bursting pattern mimicking that seen during walking
[Machado et al. (2015)]. Under these conditions, we acquired sequences of fluores-
cent images and then applied a model-based constrained deconvolution algorithm
to infer the timing of neuronal firing underlying each fluorescent activity time se-
ries extracted from the pixels corresponding to individual neurons [Pnevmatikakis
et al. (2014a)].

Each mouse leg is controlled by ∼50 different muscles, each of which is in-
nervated by motor neurons that fire in distinct patterns during locomotor behavior
[Akay et al. (2014), Krouchev, Kalaska and Drew (2006)]. Furthermore, all mo-
tor neurons that share common muscle targets are spatially clustered together into
“pools” within the spinal cord [Romanes (1964)]. Therefore, during the locomotor-
like network state monitored in these data, different spatially distinct groups of
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FIG. 10. Isolated spinal cord imaging preparation. (a) Schematic of isolated spinal cord imaging
preparation. (b) Activity inferred from fluorescence measurements obtained from four motor neurons.
Height of black bars indicates intensity of neuronal activity at each time point. Vertical blue bars
indicate the onset of each locomotor cycle (i.e., 0◦). (c) Example fluorescent imaging field with the
position of the four neurons shown in (b) indicated. (d) Each motor neuron shown in (c) is represented
in color (legend in inset) corresponding to its estimated tuning value.

motor neurons are recruited to fire at each moment in time [Figure 10(b)–(d)].
When the activity of each motor neuron is summarized as a single mean phase
tuning value [representing the average phase angle of the ∼70 firing events de-
tected per neuron, as seen in Figure 11(a)], a clear spatial map can be derived
[Figure 10(d)]. Such maps appear smooth within pools and sharply discontinuous
between pools.

FIG. 11. (a) Noisy observations of phases at which this cell has fired. The phase of each red dot on
the unit circle is a phase at which this cell has fired, and the angular histogram depicts its distribu-
tion. The blue dot is the circular mean of all red dots, and its phase and length are the ML estimates
of the preferred phase and tuning strength, respectively. (b, c) The three-dimensional spatial cell po-
sition is projected into the two-dimensional x–y plane. Each dot indicates one cell; each cell is color
coded with the phase θi,ml or tuning strength ri,ml. Preferred phases (and tuning strengths) tend to
be similar among nearby cells, but not all nearby cells have similar preferred phases (and tuning
strengths).
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While phase tuning can be reliably inferred one neuron at a time in these data,
fluorescent measurements from each neuron are not always of high quality. As a
result, activity events cannot be reliably inferred from all neurons [Machado et
al. (2015)]. Additionally, more neurons could have been observed with less data
per neuron if phase tuning was estimated more efficiently. Therefore, we applied
our robust and scalable Bayesian information sharing algorithm to these data in an
attempt to reduce measurement noise and decrease the required data necessary to
attain precision tuning map measurements.

In this setting, let us introduce some simplifying notation. We use �i to denote
the total number of spikes that neuron i has fired. As mentioned earlier, �i ∼ 70
here. Furthermore, we use θi,� to denote the �th phase at which neuron i has fired
a spike. Then we convert this phase θi,� to yi,� := [cos(θi,�) sin(θi,�)]′, a point on
the unit circle.

We model the neuron’s tendency to spike at phases that are concentrated around
a certain angle using a two-dimensional vector βi . The direction of βi is the pre-
ferred phase θi , and the length of βi is the tuning strength ri . If the neuron is
highly tuned, that is, there is no variability among phases at which this neuron
fires a spike, then ri = 1 and β i lies on the unit circle. On the other hand, if the
neuron is weakly tuned, that is, there is large variability among phases at which
this neuron fires a spike, then ri ∼ 0. We relate observation yi,� to the unknown
βi := ri[cos θi sin θi]′ as follows:

yi,�|βi , σ, νi ∼ N
(
βi , ν

2
i σ 2I

)
for � = 1, . . . , �i,

where βi is related to θi (preferred phase) and ri (tuning strength) as follows:

θi := arctan
[
β2,i

β1,i

]
,

ri :=
√

β2
2,i + β2

1,i .

There are two points worth mentioning. First, the Gaussian noise model clearly
violates the fact that {yi,�} lie on the unit circle, and should therefore be considered
a rather crude approximation. Nevertheless, as demonstrated below, this Gaussian
likelihood with our prior in (2) is remarkably effective in estimating the preferred
phases {θi} with as little as one observed phase per neuron. Second, the vector
representation of the �i spikes that neuron i has fired,

yi =
⎡
⎢⎣

yi,1
...

yi,�i

⎤
⎥⎦

2�i×1

,
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can be related to the unknown βi using the formulation presented in equation (1),
where

Xi =

⎡
⎢⎢⎣

...

I 2×2
...

⎤
⎥⎥⎦

2�i×2

.

The ML estimate of βi , given the Gaussian additive noise model, is the sample
mean of the observations {yi,�}�=1,...,�i

, βi,ml = 1
�i

∑�i

�=1 yi,�. The ML estimate

of the preferred phase θi,ml = arctan[β2,i,ml
β1,i,ml

] is the circular mean of the observed
phases, as depicted in Figure 11(a). The resulting radius ‖βi,ml‖2, the ML estimate
of ri , will be 1 if all angles are equal. If the angles are uniformly distributed on the
circle, then the resulting radius will be 0, and there is no circular mean. The radius
measures the concentration of the angles and can be used to estimate confidence
intervals.

In addition to the observed phases, we also have the three-dimensional physical
location of all cells. As an illustrative example, the spatial distribution of {θi,ml}
and {ri,ml} is depicted in Figures 11(b) and (c). The three-dimensional location
is projected into the two-dimensional x–y plane. Each dot is a cell, and its color
in panel 11(b) and (c) corresponds to θi,ml and ri,ml, respectively. Clearly, nearby
cells tend to have similar preferred phases and tuning strengths—but there are
many exceptions to this trend. A mixture prior is required to avoid over-smoothing
the border between clusters of cells with similar properties while allowing cells
within a cluster to share information and reduce noise.

In order to include the physical location of the cells into our Bayesian formu-
lation, we formed a proximity network based on nearest spatially whitened neigh-
bors, as described in Section 2. {β̂i}, the posterior expectation of {β i}, is based on
10,000 samples from our efficient Gibbs sampler (after 500 burn-in iterations). For
illustration purposes, we experimented with holding the hyperparamter λ fixed in
the simulations; the effects of this hyperparameter on the estimates of the preferred
phases and tuning strengths,

θ̂i := arctan
(

β̂2,i

β̂1,i

)
,(15)

r̂i := ‖β̂ i‖2,(16)

are depicted in Figure 12. It is clear that large λ forces nearby neurons to have
more similar preferred phases, whereas for small λ the preferred phases revert to
their respective ML estimates.

The ability of our method to recover the preferred phases from as little as one
noisy phase θi,� per neuron is illustrated below. We divide the data into two parts.
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FIG. 12. Preferred phase estimates for different values of the hyperparameter λ. Each dot corre-
sponds to the estimated preferred angle θ̂i for one cell. For λ = 0, the estimates are equal to the
ML estimates. For λ = 1, information sharing is not large enough and estimates are not very differ-
ent from the ML estimates. For λ = 10, nearby neurons are forced to have similar preferred phases,
nonetheless, the sharp border between functionally different clusters of neurons is not over-smoothed.
The posterior mean and standard deviation of λ, based on 10,000 iterations (after 500 burn-ins), are
5.26 and 0.52, respectively. For λ = 100, smoothing within clusters is stronger and borders are not
violated. However, tuning estimates within each cluster suffer from over-smoothing.

For each cell, there are roughly 70 phases recorded (at which the correspond-
ing neuron fired). For each neuron i, we randomly selected one of the phases
{θi,�}�=1,...,�i

for the training set, and let the rest of the phases constitute the testing
set:

yi,train :=
(

cos(θi,�train)

sin(θi,�train)

)
, yi,test := 1

�i − 1

∑
�=1,...,�i
� =�train

(
cos(θi,�)

sin(θi,�)

)
.
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The raw estimates of preferred phases and tuning strengths using training data are
computed as follows:

θi,train := arctan
(

y2,i,train

y1,i,train

)
, ri,train := ‖yi,train‖2;

and raw estimates of preferred phases and tuning strengths using testing data
are computed likewise. For {yi} in our Gibbs sampler, we use the training data
{yi,train}. Posterior estimates {θ̂i , r̂i , ν̂i} for four distinct datasets are depicted and
compared against testing data in Figures 13–16. For λ2 we use a Gamma(r = 1,

δ = 1) prior, and for σ 2 an improper inverse-Gamma(κ ′ = 0, ε′ = 0) prior. Gener-
ally speaking, σ and λ are not identifiable. Furthermore, the joint posterior distri-
bution of β and σ is only unimodal given {ν2

i }. We address both challenges by plac-
ing a relatively tight prior on {ν2

i }. We use independent inverse-Gamma(κ = 3,

ε = 2) priors for {ν2
i }, making the prior means and variances equal to one. Since

the posterior distribution of β and σ is only unimodal given {νi}, this prior con-
strains the νis such that the posterior distribution stays nearly unimodal. Finally,
λ and σ stay nearly identifiable given this tight prior.

The raw training estimates of preferred phases and tuning strengths are very
noisy, which is expected given the fact that only one phase per neuron is used. This
is an extremely low signal-to-noise limit. In contrast, roughly 70 phases per neuron
are used to compute the raw testing estimates. The Bayesian estimates {θ̂i , r̂i} are
also based on one phase per neuron, but they employ the a priori knowledge that
the activity of a neuron carries information about its nearby neurons. As mentioned
earlier, this is done by incorporating the proximity network into the Bayesian for-
mulation.

Moreover, as illustrated in the middle panels of Figures 13–16, the Bayesian
estimates respect the border of clustered cells with similar phasic preferences and
tuning strengths. Information is not invariably shared among nearby cells; instead,
it is based on how locally similar the samples of {βi} are. If the estimated typ-
ical noise is much less than the local difference, then, intuitively speaking, local
smoothing should be avoided because the difference seems statistically significant.

In contrast, the raw test estimates {θi,test, ri,test} are computed in isolation (one
neuron at a time), but use roughly 70 phases per neuron (high signal-to-noise). The
Bayesian estimates are less noisy in comparison to the raw training estimates (low
signal-to-noise) and qualitatively resemble the raw test estimates (high signal-to-
noise). Unlike the previous synthetic data example, here the true parameters are
unknown. In order to quantify the noise reduction, we treat the high signal-to-
noise test estimates as the unknown true parameters, and compare them against
the Bayesian estimates. Recall that the Bayesian estimates are based on the low
signal-to-noise raw train data. We quantify the noise reduction by comparing the
testing error 1

n

∑ |θ̂i − θi,test| with the raw error = 1
n

∑ |θi,train − θi,test|. The test
error is 10◦–16◦ less than the raw error; for more details see the the captions of
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FIG. 13. Dataset 1 with n = 584. The posterior estimates σ̂ = 0.62 ± 0.02 and λ̂ = 6.43 ± 0.38
(i.e., the mean ± standard deviation) are based on 10,000 samples (after 500 burn-ins). The test set
is made of 59 observed phases per neuron. The test error is 1

n

∑ |θ̂i − θi,test| = 27.6◦, and the raw

error is 1
n

∑ |θ̂i,train − θi,test| = 36.9◦.

Figures 13–16. Last, the boxplots in Figure 17 summarize and quantify the noise
reduction due to our robust Bayesian information sharing approach. In each case,
the new Bayesian approach provides significant improvements on the estimation
accuracy.

5. Concluding remarks. We developed a robust and scalable Bayesian
smoothing approach for inferring tuning functions from large-scale high-resolution
spatial neural activity, and illustrated its application in a variety of neural coding
settings. A large body of work has addressed the problem of estimating a smooth
spatial process from noisy observations [Besag (1974), Besag and Kooperberg
(1995), Rasmussen and Williams (2006), Rue and Held (2005), Wahba (1990)].
These ideas have found many of their applications in problems involving tuning
function estimation [Cunningham et al. (2008, 2009), Czanner et al. (2008), Gao
et al. (2002), Macke et al. (2010, 2011), Paninski (2010), Paninski et al. (2010),
Pnevmatikakis et al. (2014b), Rahnama Rad and Paninski (2010)]. There has also
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FIG. 14. Dataset 16 with n = 676. The posterior estimates σ̂ = 0.62 ± 0.01 and λ̂ = 7.04 ± 0.38
(i.e., the mean ± standard deviation) are based on 10,000 samples (after 500 burn-ins). The test set
is made of 60 phases per neuron. The test error is 1

n

∑ |θ̂i − θi,test| = 28.4◦, and the raw error is
1
n

∑ |θ̂i,train − θi,test| = 41.5◦.

been some work on parametric Bayesian tuning function estimation [see Cronin
et al. (2010) and references therein]. The main challenge in the present work was
the large scale (due to the high spatial resolution) of the data and the functional
discontinuities present in neuronal tuning maps [e.g., Machado et al. (2015), Ohki
et al. (2005), Shmuel and Grinvald (1996)].

In order to address these challenges, we proposed a robust prior as part of a
computationally efficient block Gibbs sampler that employs fast Gaussian sam-
pling techniques [Hoffman (2009), Hoffman and Ribak (1991), Papandreou and
Yuille (2010)] and the Bayesian formulation of the Lasso problem [Casella et al.
(2010), Park and Casella (2008)]. This work focused especially on the conceptual
simplicity and computational efficiency of the block Gibbs sampler: we empha-
sized the robustness properties of the Bayesian Lasso, the unimodality of the pos-
terior and the use of efficient linear algebra methods for sampling, which avoid the
Cholesky decomposition or other expensive matrix decompositions. Using in vitro
recordings from the spinal cord, we illustrated that this approach can effectively
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FIG. 15. Dataset 23 with n = 695. The posterior estimates σ̂ = 0.69 ± 0.02 and λ̂ = 7.39 ± 0.39
(i.e., the mean ± standard deviation) are based on 10,000 samples (after 500 burn-ins). The test set
is made of 73 phases per neuron. The test error is 1

n

∑ |θ̂i − θi,test| = 39.45◦, and the raw error is
1
n

∑ |θ̂i,train − θi,test| = 51.55◦.

infer tuning functions from noisy observations, given a negligible portion of the
data and reasonable computational time.

It is worth mentioning that in another line of work, smoothness inducing pri-
ors were used to fit spatio-temporal models to fMRI data [Groves, Chappell and
Woolrich (2009), Harrison and Green (2010), Penny, Trujillo-Barreto and Friston
(2005), Quiros, Diez and Gamerman (2010), Woolrich (2012)]. Although these
priors handle spatial correlation in the data, they do not always successfully ac-
count for spatial discontinuities and the large scale of the data. Woolrich et al.
(2004) used automatic relevance determination (ARD) [MacKay (1995)] to allow
for spatially nonstationary noise where the level of smoothness at each voxel was
estimated from the data. It is known [Wipf and Nagarajan (2008)] that ARD can
converge slowly to suboptimal local minima. On the other hand, wavelet bases
with a sparse prior, defined by a mixture of two Gaussian components, allowed
Guillaume and Penny (2007) to present a statistical framework for modeling tran-
sient, nonstationary or spatial varying phenomenon. They used variational Bayes
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FIG. 16. Dataset 26 with n = 854. The posterior estimates σ̂ = 0.62 ± 0.01 and λ̂ = 7.52 ± 0.40
(i.e., the mean ± standard deviation) are based on 10,000 samples (after 500 burn-ins). The test set
is made of 82 phases per neuron. The test error is 1

n

∑ |θ̂i − θi,test| = 27.1◦, and the raw error is
1
n

∑ |θ̂i,train − θi,test| = 42.9◦.

approximations together with fast orthogonal wavelet transforms to efficiently
compute the posterior distributions. As mentioned in their paper, a main drawback
is that wavelet denoising with an orthogonal transform exhibits Gibbs phenom-
ena around discontinuities, leading to inefficient modeling of singularities, such as
edges. In Grosenick et al. (2013), Harrison et al. (2015), Slawski (2012), Slawski,
Zu Castell and Tutz (2010), van Gerven et al. (2010), smoothness (and matrix fac-
torization) approaches were combined with various global sparsity-inducing priors
(or regularizers) to smooth (or factorize) the spatio-temporal activity of voxels that
present significant effects, and to shrink to zero voxels with insignificant effects.
In Harrison et al. (2007), nonstationary Gaussian processes were used as adaptive
filters with the computational disadvantage of inverting large covariance matrices.
Finally, in a recent work, Siden et al. (2016) design an efficient Monte Carlo sam-
pler to perform spatial whole-brain Bayesian smoothing. Costly Cholesky decom-
positions are avoided by efficiently employing the sparsity of precision matrices
and preconditioned conjugate gradient methods. The prior in Siden et al. (2016)
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FIG. 17. Tukey boxplots comparing the raw error and test error for the four datasets illustrated
in Figures 13–16. The raw and test errors (for cell i) are defined as ‖yi,train − yi,test‖2 and

‖β̂i − yi,test‖2, respectively.

assigns a spatially homogenous level of smoothness which performs less favorably
in situations involving outliers and sharp breaks in the functional map.

There is also a vast literature addressing the recovery of images from noisy
observations [see Buades, Coll and Morel (2005), Motwani et al. (2004) and ref-
erences therein]. Most of these techniques use some sort of regularizer or prior to
successfully retain image discontinuities and remove noise.

Early examples include the auxiliary line process-based quadratic penalty in
Geman and Geman (1984) and the

∑
i

1
1+|∇iβ| log prior in Geman and Reynolds

(1992), where the gradient at i is denoted by ∇i . The line process indicates sharp
edges and suspends or activates the smoothness penalty associated with each edge.
The log prior

∑
i

1
1+|∇iβ| encourages the recovery of discontinuities while render-

ing auxiliary variables of the line process as unnecessary. These log priors are non-
concave. These nonconcave maximum a posteriori optimization problems are gen-
erally impractical to maximize. Different techniques were designed based on sim-
ulated annealing [Geman and Geman (1984), Geman and Reynolds (1992), Geman
and Yang (1995)], coarse-to-fine optimization [Bouman and Liu (1988)] and alter-
nate maximization between image and auxiliary contour variables [Charbonnier et
al. (1997)] to compute (nearly) global optimums at the expense of a prohibitively
large amount of computation. Moreover, it is known that a small perturbation in the
data leads to abrupt changes in the denoised image [Bouman and Sauer (1993)].
This is due to the nonconcavity of the problem.
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Image denoising methods based on concave log priors (or regularizers) that en-
joy edge preserving properties were designed in Bouman and Sauer (1993), Green
(1990), Rudin, Osher and Fatemi (1992), Stevenson and Delp (1990a), Stevenson
and Delp (1990b). These log priors typically take the form of −∑

i φ(∇iβ) for
some concave function φ(·). Examples of φ(x) include the Huber function [Huber
(1964)] in Stevenson and Delp (1990a, 1990b), log cosh( x

T
) in Green (1990), |x|p

where 1 ≤ p < 2 [Bouman and Sauer (1993)] and |x| in the TV penalty [Besag
(1993), Rudin, Osher and Fatemi (1992)]. Various methods have been proposed
for computing optimal or nearly optimal solutions to these image recovery prob-
lem, for example, Afonso, Bioucas-Dias and Figueiredo (2010), Barbero and Sra
(2011), Bouman and Sauer (1993), Chambolle (2004), Defrise, Vanhove and Liu
(2011), Green (1990), Oliveira, Bioucas-Dias and Figueiredo (2009), Rudin, Os-
her and Fatemi (1992), Stevenson and Delp (1990a, 1990b), Vogel and Oman
(1996, 1998), Wang et al. (2009).

In addition to these approaches, another significant contribution has been to con-
sider wavelet, ridgelet and curvelet-based priors/regularizers, for example, Candes
(1999a, 1999b), Donoho and Johnstone (1994), Portilla et al. (2003), Starck, Can-
des and Donoho (2002), which present noticeable improvements in image recon-
struction problems. More recently, the nonlocal means method [Buades, Coll and
Morel (2005), Dabov et al. (2007), Lebrun, Buades and Morel (2013)] presents
a further improvement. However, most of these methods’ favorable performance
relies heavily on parameters which have been fine tuned for specifically additive
noisy observations of two-dimensional arrays of pixels of real world images. In
other words, they are specifically tailored for images. It is not clear if and how
these approaches can be modified to retain their efficiency while being applied to
a broader class of spacial observations lying on generic graphs. Moreover, the de-
noised images rarely come equipped with confidence intervals. But our sampling-
based approach allows for proper quantification of uncertainty, which could in turn
be used to guide online experimental design; for example, in the spinal cord ex-
ample analyzed here, we could choose to record more data from neurons with the
largest posterior uncertainty about their tuning functions.

In principle, many of abovementioned approaches can be formulated as
Bayesian, with the aid of the Metropolis–Hastings (MH) algorithm, to compute
posterior means and standard deviations [Lassas and Siltanen (2004), Louchet
and Moisan (2013)]. However, generic MH approaches can lead to unnecessary
high computational cost. For example, in Lassas and Siltanen (2004) a TV prior
and Gaussian noise model was used to denoise a one-dimensional pulse; it was
reported that the chain resulting from the MH algorithm suffers from very slow
convergence. One contribution of the present paper is to show that by using a hi-
erarchical representation of our prior in equation (5) costly MH iterations can be
avoided in all steps of our block Gibbs sampler. Additionally, we show how our
model can take into account nonuniform noise variance (quite common in neuro-
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science applications) without increasing the computational complexity. Finally, we
emphasize the importance of conditioning β on σ in equation (2), which has been
neglected in previous Bayesian formulations of the TV prior [Lassas and Siltanen
(2004), Louchet and Moisan (2013)]. This is important because it guarantees a
unimodal posterior of β and σ given {νi}i=1,...,n and λ.

We should also note that a number of fully Bayesian methods have been de-
veloped that present adaptive smoothing approaches for modeling nonstationary
spatial data. These methods are predicated on the idea that, to enhance spatial
adaptivity, local smoothness parameters should a priori be viewed as a sample
from a common ensemble. Conditional on these local smoothing parameters, the
prior is a Gaussian Markov random field (GMRF) with a rank deficient preci-
sion matrix [Fahrmeir, Kneib and Lang (2004), Lang and Brezger (2004), Lang,
Fronk and Fahrmeir (2002), Rue and Held (2005), Yue, Loh and Lindquist (2010),
Yue and Speckman (2010), Yue, Speckman and Sun (2012)]. The hyperprior for
the local smoothing parameters can be specified in two ways. The simpler for-
mulation assumes the local smoothing parameters to be independent [Brezger,
Fahrmeir and Hennerfeind (2007), Fahrmeir, Kneib and Lang (2004), Lang and
Brezger (2004), Lang, Fronk and Fahrmeir (2002)]. For example, Lang, Fronk and
Fahrmeir (2002) presented a nonparametric prior for fitting unsmooth and highly
oscillating functions based on a hierarchical extension of state-space models where
the noise variance of the unobserved states is locally adaptive. The main computa-
tional burden lies on the Cholesky decomposition [Brezger, Fahrmeir and Henner-
feind (2007)] or other expensive matrix decompositions of the precision matrix. In
a more complex formulation, the log-smoothing parameters follow another GMRF
on the graph defined by edges i ∼ j [Yue, Loh and Lindquist (2010), Yue and
Speckman (2010), Yue, Speckman and Sun (2012)]. In both formulations, local
smoothing parameters are conditionally dependent, rendering Metropolis-within-
Gibbs sampling necessary. These methods often provide superior estimation ac-
curacy for functions with high spatial variability on regular one-dimensional and
two-dimensional lattices, but at a prohibitively higher computational cost which
makes them less attractive for the high-dimensional datasets considered in this
paper. One interesting direction for future work would be to combine the favor-
able properties of these approaches with those enjoyed by our scalable and robust
Bayesian method.

Finally, important directions for future work involve extensions that allow the
treatment of point processes, or other non-Gaussian data, and correlated neural
activities. Since our prior can be formulated in a hierarchical manner, when deal-
ing with non-Gaussian likelihoods, it is only step 2 of our Gibbs sampler that
needs modification. In step 2, all MCMC algorithms suited for Gaussian priors
and non-Gaussian likelihoods can be integrated into our efficient Gibbs sampler.
For example, the elliptical slice sampler [Murray, Adams and MacKay (2010)] or
Hamiltonian Monte Carlo methods [Ahmadian, Pillow and Paninski (2011), Duane
et al. (1987), Girolami, Calderhead and Chin (2011), Robert and Casella (2004),
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Roberts and Stramer (2002)] are well suited for sampling from posteriors arising
from a Gaussian prior and likelihoods from the exponential family. With regard to
correlated neural activities, it would be interesting to see how tools developed in
Buesing, Macke and Sahani (2012), Vidne et al. (2012) can be incorporated into
our Gibbs sampler to make inference about models which can account for corre-
lated observations.

APPENDIX: UNIMODALITY OF THE POSTERIOR

Here we demonstrate that the joint posterior of β and σ 2 given {νi}i=1,...,n and
λ is unimodal under the prior in equation (2) and equation (3). Note that our dis-
cussion here is very similar to that of Park and Casella (2008). The joint prior
is

p
(
β, σ 2|λ) = εκ

�(κ)

(
σ 2)−κ−1

e−ε/σ 2 ∏
i∼j

(
λ

2σ

)m

exp
(
− λ

σ
‖β i − βj‖2

)
.

The log posterior is

−
(
κ + 1 + nd + pm

2

)
logσ 2 − ε

σ 2 − λ√
σ 2

∑
i∼j

‖β i − βj‖2

(17)

− 1

2σ 2

n∑
i=1

‖yi − Xiβi‖2
2

ν2
i

,

ignoring all the terms independent of β and σ 2. The mapping (and its inverse)

(18) φi ↔ βi√
σ 2

, ρ ↔ 1√
σ 2

is continuous. Therefore, unimodality in the mapped coordinates is equivalent to
unimodality in the original coordinates. The log posterior (17) in the new coordi-
nates is

(2κ + 2 + nd + pm) logρ − ερ2 − λ
∑
i∼j

‖φi − φj‖2

(19)

− 1

2

n∑
i=1

‖ρy
i
− Xiφi‖2

2,

where we have earlier defined in equation (7)

y
i
:= yi

νi

, Xi := Xi

νi

.

The log posterior in equation (19) is clearly concave in (φ1, . . . ,φn, ρ), and hence
the posterior is unimodal.
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