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Abstract— In this paper, we present a model of distributed
parameter estimation in networks, where agents have access
to partially informative measurements over time. Each agent
faces a local identification problem, in the sense that it cannot
consistently estimate the parameter in isolation. We prove that,
despite local identification problems, if agents update their
estimates recursively as a function of their neighbors’ beliefs,
they can consistently estimate the true parameter provided
that the communication network is strongly connected; that
is, there exists an information path between any two agents
in the network. We also show that the estimates of all agents
are asymptotically normally distributed. Finally, we compute
the asymptotic variance of the agents’ estimates in terms
of their observation models and the network topology, and
provide conditions under which the distributed estimators are
as efficient as any centralized estimator.

I. INTRODUCTION

One of the central problems in the study of multi-agent
systems is the information aggregation problem. In many
scenarios, information is spread throughout the network in
such a way that no agent has access to enough data to learn a
relevant parameter in isolation, and therefore, agents face the
task of recovering the truth by engaging in communication
with one another. Such problems are ubiquitous in social and
economic networks, as well as networks engineered for spe-
cific applications. For example, Kotler [1] and Ioannides and
Loury [2] document how people base their decisions on their
neighbors’ information when purchasing consumer products
or adopting new technologies, respectively. Similarly, the
main goal of distributed sensor and robotic networks is to
aggregate relevant decentralized information, so that a pre-
specified task can be performed properly (see e.g., Jadbabaie,
Lin, and Morse [3] and Bullo, Cortés, and Martı́nez [4]).

The goal of this paper is to develop a recursive model
for aggregation of dispersed information over networks,
where the measurements of each agent are only partially
informative about the unknown parameter. In order to resolve
the local identification problems they face,1 agents in our
model update their estimates as a function of their neighbors’
beliefs. More specifically, we assume that at discrete time
intervals, each agent sets its belief as the geometric mean of
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1Throughout the paper, by local (global) identifiability, we mean the
possibility of consistently estimating the parameter through an agent’s
private data (the data observed by all agents). The terminology should
not be mistaken by the concepts of local and global indistinguishably in
a neighborhood of the true parameter in the parameter space.

the likelihood of its observation and its neighbors’ beliefs,
and uses the mode of the updated belief function as the
estimate for the unknown parameter.

We show that despite the absence of local identifiability
across the network, agents’ estimates are weakly consistent
(i.e., converge to the truth in probability), provided that
there exists a directed information path connecting any
two agents in the network. In other words, we prove that
as long as the underlying network is strongly connected,
information is properly aggregated over the network and the
local identification problems are resolved. We also show that
as observations accumulate, the distribution of agents’ esti-
mates converge to a normal distribution. The consistency and
asymptotic normality of agents’ estimates hold regardless
of the distribution of their measurements and the structure
of the network (beyond of course, the strong connectivity
requirement). Furthermore, we characterize the asymptotic
covariance matrix of the distributed estimates in terms of
agents’ signal structures, as well as the network topology.
Using this characterization, we show that in bidirectional
networks, distributed estimators are as efficient as any cen-
tralized estimator with access to the collection of signals
observed across the network. This efficiency is achieved even
if the communication network is highly sparse.

Our work is related to the collection of works on learning
in networks in economics, as well as distributed estimation
and consensus algorithms in the control literature. The con-
sensus literature (such as DeGroot [5], Jadbabaie, Lin, and
Morse [3], and Golub and Jackson [6]) studies models in
which a collection of agents asymptotically agree on the
same value. Golub and Jackson provide conditions under
which the asymptotic consensus value coincides with the true
underlying parameter in large networks. In the same spirit is
Xiao, Boyd, and Lall [7], which uses the consensus update to
compute the maximum-likelihood estimate of the underlying
parameter in a distributed fashion. These papers, however,
do not address the problem of local identifiability, as they
assume that all agents’ observations are equally informative.
This is the main point of departure of this paper from the
above mentioned works, as we assume agents face local
identification problems due to their different signal struc-
tures. Moreover, we show that as time progresses, not only
the agents agree on their estimates, but also their consensus
estimate converges to the true underlying parameter.

More relevant to our paper is Jadbabaie, Sandroni, and
Tahbaz-Salehi [8], which studies distributed non-Bayesian
learning in social networks. However, unlike [8], we study
the problem of estimating a parameter in a continuum and
in presence of continuous observations. Furthermore, we
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characterize the rate of convergence and the efficiency of the
estimates. Finally, our work is also relevant to Kar, Moura,
and Ramanan [9], who focus on a non-stationary update with
time-decaying weight sequences associated with consensus
and innovation updates. In contrast to [9], in this paper, we
address general non-linear observation models and present a
stationary update for the beliefs.

The rest of the paper is organized as follows. In the next
section, we describe the model and present the dynamics
according to which agents update their estimates of the true
parameter. In Section III, we prove that all agents’ estimates
are consistent. Asymptotic normality is proved in Section IV,
where we also compute the asymptotic variance of agents’
estimates. In Section V, we investigate the efficiency of the
distributed estimators and compare our results with central-
ized maximum likelihood estimation. Section VI concludes.

II. THE MODEL

A. Agents and Observations

Let N = {1, 2 . . . , n} denote a group of agents, located
on a network, who are assigned the task of estimating an
unknown parameter θ∗ ∈ Θ, where Θ ⊆ Rd is a convex
parameter space. At discrete time steps t ∈ N, each agent
observes noisy and partially informative signals that can be
used in estimating the parameter. More specifically, at any
given time period t, agent i observes a random signal sit ∈
Rp, drawn from a distribution with conditional probability
density `i(·|θ). We assume that agents’ signals are i.i.d.
over time and independent from the observations of all other
agents.

The signals observed by a single agent, although poten-
tially informative, do not reveal the parameter completely;
i.e., each agent faces an identification problem. Two param-
eters are said to be observationally equivalent from the point
of view of an agent if the conditional distributions of the
signals coincide. We denote the set of parameters that are
observationally equivalent to θ∗ from the point of view of
agent i by Θ̄i ,

{
θ ∈ Θ : P[`i(si|θ) = `i(si|θ∗)] = 1

}
.2

Despite the local identification problems faced by the
agents, we assume that the true parameter is identifiable if
one has access to the signals observed by all agents.

Assumption (GI): The true parameter is globally identifi-
able; that is,

⋂n
i=1 Θ̄i = {θ∗}.

The above assumption plays a key role in our main results.
Clearly, in its absence, even an agent with access to all the
data collected across the network over time would not be
able to consistently estimate θ∗.

In addition to Assumption (GI), we impose the following
regularity conditions on the observation models of the agents:

(A1) `i(·|θ) is twice continuously differentiable in θ for
all realizations of data.

(A2) log `i(·|θ) is concave in θ for all observations.

2Throughout the paper, P refers to the probability distribution induced by
the true parameter θ∗, and E denotes expectation with respect to P.

(A3) `i(si|θ) is a measurable function of si for all θ ∈ Θ.
(A4) E[log2 `i(si1|θ)] <∞ for all i.
(A5) E

[
supθ∈B ‖∇θθ log `i(si1|θ)‖

]
< ∞, for some

neighborhood B of θ∗, where ∇θθ denotes the
Hessian with respect to the parameter vector θ.

The above assumptions are quite mild and many of the
usual distribution families, such as normals and exponentials,
satisfy them. We have made these assumptions for simplicity,
and our results hold under much weaker restrictions as well.

Finally, we define the Fisher information matrix corre-
sponding to agent i’s observation model as the covariance of
its score function; that is,

Ii(θ) = E
[
∇θ ψiθ(si1)∇θ ψiθ(si1)′

]
(1)

where ψiθ(s
i
t) , log `i(sit|θ) and∇θ denotes the gradient with

respect to the parameter vector θ. As the definition suggests
Ii is a d× d symmetric and positive semi-definite matrix.

B. Network Structure

In addition to signals {sit}∞t=1 observed privately over
time, each agent can communicate with a subset of other
agents known as its neighbors. We capture this neighborhood
relation with a directed graph G = (V,E), where each vertex
in V corresponds to an agent i ∈ N , and there exists a
directed edge (j, i) ∈ E from vertex j to vertex i if agent i
has access to the belief function of agent j. We denote the set
of neighbors of agent i with Ni, and impose the following
restriction on the network:

Assumption (C): The communication graph G is strongly
connected; that is, there exists a directed path from any vertex
to any other vertex in G.

Intuitively, Assumption (C) guarantees the possibility of
information flow between any two agents (either directly or
indirectly) in the network. The next sections will highlight
the role played by this assumption in guaranteeing consis-
tency and asymptotic normality of agents’ estimates.

C. Belief Dynamics and Estimates

In order to aggregate the information provided to them
over time – either through observations or communication
with neighbors – agents hold and update beliefs over the
parameter space Θ. More specifically, we denote the belief
of agent i at time t with µi,t : Θ −→ R+, a probability
measure over Θ. As for the dynamics, we assume that each
agent updates its belief function as a geometric mean of
its neighbors’ beliefs and its own observation likelihood
function; or equivalently, the log-posterior beliefs of each
agent is a linear combination of its neighbors’ log-beliefs
and its log-likelihood function:

νi,t+1(θ) = λi log `i(sit+1|θ)+
∑

j∈Ni∪{i}

wijνj,t(θ)+ci,t (2)

where νi,t(θ) , logµi,t(θ) is the logarithm of the belief
function, λi > 0 is the weight that agent i assigns to
its private observations, wij > 0 is the weight assigned
to the beliefs of agent j in its neighborhood, and ci,t is
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a normalization constant which ensures that µi,t+1(θ) is a
well-defined probability density over Θ. Note that constants
ci,t do not depend on the parameter θ. Throughout the paper,
we assume that λi = λ, and

∑
j∈Ni∪{i} wij = 1, for all

i ∈ N .
Given its beliefs at any given time period, agent i’s

estimate of the true parameter is defined as a maximizer of
its belief function; that is,3

θ̂i,t ∈ arg max
θ∈Θ

νi,t(θ). (3)

Note that θ̂i,t is a random variable that depends on the data
observed by agents up to time t. In the next section we
show that this point estimator always exists and is a mea-
surable function of the data. Moreover, note that due to the
identification problem faced by each agent, the maximizer
is not necessarily unique at all times. In that case, θ̂i,t can
correspond to any solution of (3).

In order to simplify notation, we write update (2) in matrix
form as

νt+1(θ) = Wνt(θ) + λψθ(st+1) + ct ∀θ ∈ Θ

where W = [wij ] is a stochastic matrix with wij = 0 if
j 6∈ Ni ∪ {i}, and ct is a vector of constants independent of
θ. Thus, at any time t, we have

νt(θ) = W tν0(θ) + λ

t∑
τ=1

W t−τψθ(sτ ) + c′t,

where c′t is a vector that depends on past observations of all
agents, but not θ. Finally, we define

Φi,t(θ) ,
1
t

t∑
τ=1

n∑
j=1

[W t−τ ]ijψ
j
θ(s

j
τ )

which is a function of agents’ observations as well as the
parameter. Therefore,

νi,t(θ) = λtΦi,t(θ) +
n∑
j=1

[W t]ijνj,0(θ) + c′i,t (4)

where the second term only depends on the priors and the
last term is a constant not depending on θ. This immediately
implies that for large enough t, the point estimator θ̂i,t
coincides with the maximizer of Φi,t(θ) over Θ.

III. CONSISTENCY

In this section, we prove that under relatively mild as-
sumptions, all agents’ estimates of the true parameter are
asymptotically consistent in probability; that is, θ̂i,t

p−→ θ∗

for all i as t → ∞. Before presenting our results on
consistency, we state a few lemmas. The proofs can be found
in the Appendix.

Our first lemma establishes that the point estimator of each
agent is well-defined.

3Given the fact that log is a monotone function, defining the estimate
as the mode of the log-belief function is equivalent to defining it as the
maximizer of the belief function itself.

Lemma 1: Suppose that θ∗ ∈ int Θ. Then, there exists a
measurable function of the data θ̂i,t that solves (3).

The next lemma shows that the beliefs of all agents
converge asymptotically to a limit independent of their priors.

Lemma 2: Suppose that Assumption (C) holds. Then,

Φi,t(θ)
p−→ Φ∞(θ) ,

n∑
j=1

zjE[log `j(s
j
1|θ)] (5)

for all θ ∈ Θ, where z = [zi] is the stationary distribution of
a Markov chain with W as its probability transition matrix.

Note that under Assumption (C), matrix W corresponds to
an aperiodic and irreducible Markov chain, and therefore, has
a unique stationary distribution z, with all elements strictly
positive. Moreover, the limiting normalized log-posterior
belief function Φ∞(θ) is independent of i for all values
of θ, and as a result, for large enough t, the beliefs of all
agents get arbitrarily close. This implies that, as observations
accumulate, the agents’ estimates get closer to one another.

The next lemma establishes that the limiting log-posterior
belief function Φ∞(θ) is uniquely maximized at the true
parameter θ∗, if the truth is globally identifiable and the
network of agents is strongly connected.

Lemma 3: Suppose that Assumptions (C) and (GI) hold.
Then,

arg max
θ∈Θ

Φ∞(θ) = {θ∗},

where Φ∞(θ) is defined in (5).
Both Assumptions (C) and (GI) are required for the

above lemma to hold. Clearly, in the presence of a global
identification problem in the network, there exists a θ 6= θ∗

for which Φ∞(θ) = Φ∞(θ∗) on almost all sample paths,
and therefore, the limiting log-posterior belief function is not
uniquely maximized. On the other hand, a network which is
not strongly connected corresponds to a random walk with
some transient states which implies that vector z will have
at least one element, say zk, equal to zero. As a result, the
identification problem of agent k persists and leads to a non-
unique solution to the maximization problem.

We now present the main result of this section.
Theorem 1: Suppose that θ∗ ∈ int Θ and that Assump-

tions (C) and (GI) hold. Then, the point estimators of all
agents are weakly consistent; that is

θ̂i,t
p−→ θ∗ ∀i.

Proof: First, note that for large enough t, the estimate
θ̂i,t coincides with the maximizer of Φi,t(θ) over Θ. On
the other hand, by Lemma 2, the convex function Φi,t(θ)
converges to Φ∞(θ) in probability for all θ. As established
by Lemma 3, Φ∞(θ) is uniquely maximized at θ∗, and
therefore, by Theorem 2.7 of Newey and McFadden [10], the
maximizer of Φi,t(θ) converges in probability to θ∗ for all
i ∈ N . Thus, the estimator of ever agent is weakly consistent.

Theorem 1 establishes that as the number of observations
grows, the estimate of each agent converges to the parame-
ter corresponding to the true data generating process. The
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importance of this result lies in the fact that asymptotic
consistency is achieved despite the fact that all agents face
some identification problem – in the sense that no agent
can consistently estimate the true parameter in isolation.
However, if agents have access to the information held by
their neighbors and the communication graph is strongly
connected, then information is properly aggregated over the
network, and the estimate of every agent converges to the
true parameter.

The other notable fact about Theorem 1 is that consistency
is achieved regardless of the network’s structure. More
specifically, as long as the network is strongly connected,
its topology and the weights wij assigned by the agents to
their neighbors do not affect convergence of the estimates to
the truth. However, in the next sections, we show that the
network structure determines the efficiency of the distributed
estimators.

IV. ASYMPTOTIC NORMALITY

In this section, we prove that the agents’ estimates are
asymptotically normally distributed and characterize their
asymptotic covariance matrices.

We start by stating two auxiliary lemmas, which are
proved in the Appendix. Lemma 4 is simply a weak law
of large numbers for the Hessian of the log-likelihood of the
observations, whereas Lemma 5 is a central limit theorem
for the gradients.

Lemma 4: Suppose that {θ̄i,t}i∈N are consistent estima-
tors of θ∗, and suppose Assumption (C) holds. Then,

−∇θθΦi,t(θ̄i,t)
p−→

n∑
j=1

zjIj(θ∗) ∀i.

Lemma 5: Suppose that Assumption (C) holds. Then, for
all i ∈ N

√
t∇θ Φi,t(θ∗)

d−→ N
(
0,

n∑
j=1

z2
jIj(θ∗)

)
.

We are now ready to state and prove the main result of
this section.

Theorem 2: Suppose that Assumptions (C) and (GI) hold.
Then, √

t(θ̂i,t − θ∗)
d−→ N (0,Avar) (6)

where the asymptotic covariance matrix is given by

Avar =

 n∑
j=1

zjIj(θ∗)

−1
n∑
j=1

z2
jIj(θ∗)

 n∑
j=1

zjIj(θ∗)

−1

.

(7)

Proof: By definition, θ̂i,t is a maximizer of Φi,t(θ),
and therefore, it must be the case that ∇θ Φi,t(θ̂i,t) = 0. On
the other hand, by the mean value theorem, we have

∇θ Φi,t(θ̂i,t) = ∇θ Φi,t(θ∗) +∇θθ Φi,t(θ̄i,t)(θ̂i,t − θ∗),

where θ̄i,t is a mean value between θ∗ and θ̂i,t. Thus, we
can solve for (θ̂i,t − θ∗) and get
√
t(θ̂i,t − θ∗) = −

√
t
[
∇θθ Φi,t(θ̄i,t)

]−1∇θ Φi,t(θ∗).

Since θ̄i,t lies between θ∗ and θ̂i,t, it is a consistent
estimator for θ∗,4 and therefore, Lemma 4 implies that
∇θθ Φi,t(θ̄i,t)

p−→ −
∑n
j=1 z

2
jIj(θ∗). Note that the global

identifiability assumption guarantees that
∑
j z

2
jIj(θ∗) is

non-singular. On the other hand, Lemma 5 guarantees that√
t∇θ Φi,t(θ∗)

d−→ N (0,
∑n
j=1 zjIj(θ∗)). At this point, the

theorem trivially follows by Slutsky’s theorem.5

Theorem 2 states that the agents’ estimates are normally
distributed as the sample size grows. As the proof suggests,
the key idea behind asymptotic normality is that in large
samples, estimators are approximately equal to linear com-
binations of sample averages (a consequence of applying
the mean value theorem), so that the central limit theorem
can be applied [10]. The theorem also states that distributed
estimators, like the centralized maximum likelihood estima-
tor, are

√
t-consistent. Finally, expression (7) provides the

asymptotic covariance matrix of the estimates in terms of the
network structure and information matrices corresponding to
agents’ observation models.

V. ESTIMATOR EFFICIENCY AND NETWORK TOPOLOGY

In the previous section, we derived asymptotic variance of
the distributed estimators. In this section, we investigate their
efficiency in terms of the network structure, as well as the
observation model of each agent. Our next theorem compares
the distributed estimator with a centralized estimator, and
provides a bound for its performance.

Theorem 3: Suppose that Assumptions (GI) and (C) hold.
Then, asymptotic variance of the distributed estimator satis-
fies

Avar � [Ic(θ∗)]−1 (8)

where Ic(θ) denotes the Fisher information matrix of a
centralized estimator with access to the observations of all
agents. Moreover, the above bound is tight if W is doubly
stochastic.

Before presenting the proof, a few remarks are in order.
First note that [Ic(θ∗)]−1 is equal to asymptotic variance
of the maximum-likelihood estimator of a centralized entity
with access to the measurements of all agents. In other words,
equation (8) simply means that the distributed estimators
are never more efficient (in the Cramér-Rao sense) than
a centralized maximum likelihood estimator. This is not
surprising, as one expects that decentralization can never lead
to a more efficient estimation.

The second part of the theorem, however, is more strik-
ing. It basically states if the weight matrix W is doubly
stochastic, then the distributed estimator is as efficient as
any centralized estimator. For example, if all communication
links are bidirectional and the weights that each pair of
agents assign to one another are equal (i.e., wij = wji),
then decentralization does not sacrifice efficiency, regardless
of how sparse the network is.

4Note that in Theorem 1 we established that θ̂i,t is consistent.
5Slutsky’s theorem states that if xt

d−→ x and yt
p−→ c where c is a

constant, then, xtyt
d−→ cY .
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Proof of Theorem 3: We first compute Ic(θ) in terms
of the Fisher information matrices corresponding to agents’
observation models. By independence of observations across
agents, we have

`(st|θ) = `1(s1
t |θ)`2(s2

t |θ) · · · `n(snt |θ),

which implies

Ic(θ∗) = E

 n∑
j=1

∇θψjθ∗(sj1)
n∑
i=1

∇′θψiθ∗(si1)


=

n∑
j=1

E
[
∇θψjθ∗(sj1)∇θψjθ∗(sj1)′

]
=

n∑
j=1

Ij(θ∗),

where we have used the fact that E
[
∇θ log `i(si1|θ∗)

]
= 0

(see proof of Lemma 5). Therefore, in order to prove (8),
we need to show that

Q =
n∑
j=1

Ij(θ∗)−
n∑
j=1

zjIj(θ∗)

 n∑
j=1

z2
jIj(θ∗)

−1
n∑
j=1

Ij(θ∗)

is positive semi-definite. Note that Q is the Schur comple-
ment of

X =

∑j z
2
jIj(θ∗)

∑
j zjIj(θ∗)∑

j zjIj(θ∗)
∑
j Ij(θ∗)


which can be easily verified to be positive semi-definite.6

Thus, Q is also positive semi-definite, which proves the first
part of the theorem.7

To prove the second part, we use the fact that if W is
doubly stochastic, then its corresponding Markov chain has
a uniform stationary distribution, that is, zi = 1

n . Therefore,
expression (7) reduces to

Avar =

 n∑
j=1

Ij(θ∗)

−1

= [Ic(θ∗)]−1

which is the asymptotic covariance matrix of the centralized
maximum likelihood estimator. This proves that the bound
is tight.

As a final remark, we emphasize that although sufficient,
double stochasticity of W is not necessary for efficiency
of the distributed estimator. For example, it is possible to
achieve efficiency by assigning a zero weight on an agent
whose signals are non-informative, and have the rest of the
weights equally shared among the rest of the agents. A
complete characterization of efficiency conditions is part of
our ongoing research.

6Note that u′Xu =
P

j(zju
′
1 + u′2)Ij(θ

∗)(zju1 + u2) ≥ 0 for all
u′ = [u′1 u

′
2].

7For more on Schur complement and its properties, see for example, Boyd
and Vandenberghe [11], page 650.

VI. CONCLUSIONS

In this paper, we studied a model of distributed estimation
over a network, where each agent faces a local identification
problem – in the sense that it cannot consistently estimate
a parameter of interest in isolation. The agents engage in
communication with their neighbors in order to resolve their
identification problems. We showed that as long as the true
parameter is globally identifiable (i.e., there is enough infor-
mation across the network for it to be uniquely identified)
and the communication network is strongly connected (i.e.,
there exists a direct or indirect information path connecting
any two agents), then all agents can consistently estimate
the true parameter as observations accumulate. Moreover,
we proved that under some regularity assumptions on the
observation models, the agents’ estimates are asymptotically
normally distributed. Finally, we computed the asymptotic
variance of the distributed estimators, and showed that in
bidirectional networks, the agents’ estimators are as efficient
as any centralized estimator, regardless of the sparsity of the
network.
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APPENDIX: OMITTED PROOFS

Proof of Lemma 1: The proof is along the lines of
the proof of Lemma 7.1 in Hayashi [12], and therefore, is
omitted.

Proof of Lemma 2: We first show that variance of
Φi,t(θ) converges to zero, for all i and θ:

var[Φi,t(θ)] =
1
t2

t∑
τ=1

n∑
j=1

[W t−τ
ij ]2 var[ψjθ(s

j
1)]

≤ 1
t

n∑
j=1

var[ψjθ(s
j
1)] −→ 0,

and therefore, Φi,t(θ)−E[Φi,t(θ)]
p−→ 0. On the other hand,

we have

E[Φi,t(θ)] =
n∑
j=1

[
1
t

t∑
τ=1

W t−τ

]
ij

E[ψjθ(s
j
1)]

−→
n∑
j=1

[1z′]ijE[ψjθ(s
j
1)]

=
n∑
j=1

zjE[ψjθ(s
j
1)],

where we used the fact that W corresponds to an aperiodic
and irreducible Markov chain with the unique stationary
distribution z (guaranteed by Assumption (C)), and that
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Cesàro means preserve convergent sequences and their limits.
Thus, we have

Φi,t(θ)
p−→

n∑
j=1

zjE[ψjθ(s
j
1)]

for all i ∈ N and all θ ∈ Θ, which completes the proof.

Proof of Lemma 3: By Jensen’s inequality,

E

[
log

`j(s
j
1|θ)

`j(s
j
1|θ∗)

]
≤ log E

[
`j(s

j
1|θ)

`j(s
j
1|θ∗)

]
= 0,

implying

E[log `j(s
j
1|θ)] ≤ E[log `j(s

j
1|θ∗)]

with equality holding if and only if θ ∈ Θ̄j . Therefore,
the set of maximizers of E[log `j(s

j
1|θ)] coincides with the

set of parameters that are observationally equivalent to θ∗.
Thus, by Assumption (GI), θ∗ is the unique maximizer of
their weighted sum. Notice that once again we are using the
fact that all elements of vector z are strictly positive.

Proof of Lemma 4: First, notice that by a simple weak
law of large numbers argument, ∇θθΦi,t(θ) − E∇θθΦi,t(θ)
converges to zero in probability, pointwise for all θ ∈ Θ.
Moreover, we have

E∇θθΦi,t(θ) −→
n∑
j=1

zjE[∇θθψjθ(s
j
1)]

for all θ, where once again we have used Assumption (C)
and the convergence of Cesàro means. Therefore,

∇θθΦi,t(θ)
p−→

n∑
j=1

zjE[∇θθψjθ(s
j
1)] ∀θ ∈ Θ.

Now Corollary 2.2 of Newey [13] implies that under As-
sumptions (A1)–(A5), ∇θθΦi,t(θ) converges uniformly in
probability to

∑n
j=1 zjE[∇θθψjθ(s

j
1)], and therefore, by The-

orem 4.1.5 of Amemiya [14], for any consistent estimator
θ̄i,t

p−→ θ∗, we have

∇θθΦi,t(θ̄i,t)
p−→

n∑
j=1

zjE[∇θθψjθ∗(sj1)].

Finally, the information matrix equality implies that

E[∇θθψjθ∗(sj1)] = −E
[
∇θ ψjθ∗(sj1)∇θ ψjθ∗(sj1)′

]
which is equal to −Ij(θ∗), by definition. This completes
the proof.

Proof of Lemma 5: The proof of this lemma relies on
the multivariate extension of the Lindeberg-Feller central
limit theorem, which can be found in van der Vaart [15],
Proposition 2.27. But first, notice that by Lemma 3.6 of
Newey and McFadden [10], we have

E
[
∇θ log `i(si1|θ∗)

]
= 0,

implying that E∇θ Φi,t(θ∗) = 0.
In order to apply the Lindeberg-Feller CLT, we need to

show that the Lindeberg condition is satisfied; that is

1
t

t∑
τ=1

n∑
j=1

(W t−τ )2
ijE
[
‖∇θ ψjθ∗‖

2I{W t−τ
ij ‖∇θ ψjθ∗‖>ε

√
t}
]
→ 0

for all ε > 0, as t → ∞, where I denotes the indicator
function, and for notational simplicity, we have dropped the
dependence of ∇θ ψjθ∗ on the observations sj . Verifying that
the Lindeberg condition is straightforward: the left hand-side
is bounded above by expression

max
1≤j≤n

E
[
‖∇θ ψjθ∗‖

2I{‖∇θ ψjθ∗‖>ε
√
t}
]

which converges to zero for all ε > 0 as t → ∞. Thus, by
the Lindeberg-Feller CLT,

√
tΦi,t(θ∗)

d−→ N (0, S), where
S is given by

S = lim
t→∞

1
t

t∑
τ=1

n∑
j=1

(W t−τ )2
ijE
[
∇θ ψjθ∗(sj1)∇θ ψjθ∗(sj1)′

]
=

n∑
j=1

z2
jIj(θ∗)

where we have used the fact that W t −→ 1z′, and the
definition of the Fisher information matrix in (1).
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